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Abstract

Free-flying manipulator systems are envisioned to perform servicing, inspection and as-

sembling operations in orbit. The control of such systems is a challenging task, since

the equations that govern their motion are highly nonlinear. Furthermore, unlike fixed-

base manipulators a free-floating robot exhibits nonholonomic behavior as a result of the

nonintegrability of the angular momentum conservation law.

Much effort has already been dedicated to free-flying and free-floating systems from

the viewpoint of inertia coupling effects between the manipulator and base motion. In

many cases such coupling effects are beneficial (base vibration suppression control using

the manipulator system), in others they impose great difficulties for the control algo-

rithms (applications related to reactionless motion planning). Extensive analysis of this

phenomenon is necessary since it can extend the capabilities of space manipulators. In this

thesis, different problems typically appearing as a result of the above mentioned dynamic

coupling effects are discussed.

The work is divided into six parts. Chapter 1 is introductory and outlines some of

the typically appearing difficulties during the utilization of free-flying and free-floating

systems. It is organized as a short literature survey that makes an overview of some of

the dynamic modeling, planning and control strategies introduced up to now.

Chapter 2 develops the dynamic equations governing the motion of a general manip-

ulator system with open or closed-loop structure that is mounted on a free-floating base.

The formulation presented is used as a framework for the remaining chapters of this thesis.

Chapter 3 makes an outline of some of the fundamental concepts and strategies used

for the control of free-floating systems. It is intended to be a review of some of the existing

methods, closely related to the problems studied in this thesis.

The main topic addressed in this study is the capture of a tumbling satellite using a

robotic manipulator. In resent years, such operation has been recognized to be a priority

task, since its solution is expected to be applied to a variety of space missions, involving

servicing, inspection, and repairing operations. The approaching motion of a manipulator

arm to a target satellite and the resulting post-impact motion of the system are discussed

in Chapters 4 and 5, respectively. The aims of the analysis made can be outlined as
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follows;

(1) to provide further insight into the problems occurring while capturing a tumbling

satellite;

(2) to propose a new method for planning reactionless end-effector paths to a desired

point in Cartesian space;

(3) to propose a strategy using bias angular momentum that can facilitate the trajectory

planning and post-impact control;

(4) to propose two control laws for the post-impact phase that can manage the momen-

tum in the system in a desired way.

The main contributions of Chapter 4 are: (i) introduction of the Holonomic Distribution

Control, which can be utilized for reactionless path planning to a stationary target satellite;

(ii) the introduction of the Bias Momentum Approach, methods for its application and

discussion on its influence on the post-impact motion of the system.

In Chapter 5, analysis of manipulator motions that result in maintaining the stationary

state of the spacecraft’s base in the presence of external wrenches is made. The Distributed

Momentum Control is introduced and compared with existing post-impact control strate-

gies.

The final chapter consists of conclusions and remarks for possible future work.

The utilization of the three new concepts introduced in this thesis;

(c1) Holonomic Distribution Control;

(c2) Bias Momentum Approach;

(c3) Distributed Momentum Control,

can be beneficial for the solution of variety of practical problems. In each section, notes

on the practical implementation of those concepts are made. In addition, numerical sim-

ulations are performed in order to verify and demonstrate their usefulness.
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Chapter 1

Introduction

This chapter makes a brief review of some of the research activities and accomplishments

made in the area of dynamic modeling, planning and control of space robotic systems.

Many of the problems to be considered uniquely appear only in the case of moving base

robots. Nevertheless, when possible, a parallel between such systems and ground-fixed

manipulators will be made.

1.1 Space manipulator systems

Free-flying manipulator systems are envisioned to perform servicing, inspection and as-

sembling operations in orbit. Equipped with highly dexterous tools and carried by trans-

porter vehicles, their application in orbit is indispensable. However, in order the potential

of manipulator systems for space applications to be fully utilized, a number of technical

challenges need to be solved first. Those challenges arise in number of areas, including dy-

namics and control. In many cases it is not possible to directly use the already developed

control strategies for fixed-base manipulators because the nature of the problems occurring

are unique to space robots. In the sequel, some of the typical difficulties experienced in

many space applications will be discussed. Ways for overcoming them by means of using

articulated manipulator systems will be the main objective of this research.

The practical utilization of manipulator systems in space is already fact. In 1997

NASDA’s ETS-VII satellite successfully demonstrated the rendezvous and docking with

a cooperative target [127]. Other examples include the Canadian Special Purpose Dex-

terous Manipulator (SPDM), mounted on the space station remote manipulator system

(SSRMS); the Japanese Experimental Module Remote Manipulator System (JEM-RMS),

which consists of a macro and micro manipulator Fig. 1.11.

Utilization of free-flying manipulator systems for accomplishment of different space

missions have already been proposed [16], [93]. The advantages of such systems are em-
1The lunching of JEM-RMS will be fact in the near future.
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2 Chapter 1 Introduction

Figure 1.1: Japanese Experimental Module Remote Manipulator System (JEM-RMS)
(Courtesy of JAXA)

phasized from the viewpoint of unlimited workspace and high level of redundancy. The

linear and attitude motions of the spacecraft’s base of a free-flying system are assumed

to be actively controlled using reaction jets (thrusters) during the arm motion. Such

approach, though simple and with straightforward implementation has a considerable dis-

advantage, since it leads to reduction of the life of a satellite system. This reduction comes

from the fact that the amount of reaction jet’s fuel is nonrenewable and limited resource

in space. This problem is very challenging for the research community since its solution

requires planning and control algorithms to be properly addressed.

As opposed to free-flying systems, the spacecraft of free-floating robot manipulators

is not actively controlled during the process of manipulation. Since in such case the mo-

mentum is conserved2, the arm motion will induce reactions to the base body. Especially,

the angular reactional motion is mostly undesirable, since loss of communication with the

ground-base and other problems can occur. A number of control strategies that cope with

2If the environmental disturbances are assumed negligible for the duration of the manipulator motion.
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these difficulties are already introduced and will be outlined in the sequel. Furthermore,

as noted in [89], [87] free-floating systems suffer from the so called dynamic singularities,

which makes the analysis even more challenging. Clearly, the free-flying and free-floating

modes can be employed during different phases of a mission.

1.2 Current State-Of-The-Art

This section is intended to be a short literature survey. An overview of some of the dy-

namic modeling, planning and control strategies (related to a satellite capturing operation)

introduced up to now is made. A common starting point for such survey is from issues

related to kinematic and dynamic modeling. This is an important aspect since in order

suitable control algorithms to be designed and implemented, good understanding of robot

dynamics is needed.

1.2.1 Kinematics and dynamics modeling for space manipulators

Dynamics of multibody systems is a field that have been studied by many researchers.

A variety of approaches which differ in complexity and level of efficiency are available.

Main focus of most of them is on Newton-Euler, Lagrangian or Kane’s formulations [60],

[37], [50]. Most of the research has been conducted mainly with respect to fixed-base

manipulator systems, nevertheless majority of the methods available could be adopted for

the case when the base body is free-floating.

Wittenburg [119], [96] was among the first to propose the use of the concept of reduced

tree system to tackle the problems of dynamics for systems having close-loop structure.

In the case when no external forces act on the system, simplifications to the dynamical

model could be obtained by using the virtual manipulator approach proposed in [113], [114].

In [87], using barycentric vectors a study on the kinematics and dynamics of systems in

free-floating mode is made. In [66], the idea of direct path method which results in more

compact equations of motion was introduced, the authors discussed the barycentric vector

approach as well. A detailed discussion on the dynamics of multibody systems is made in

Chapter 2 where systematic derivation of a dynamic model for space manipulators with

open and closed-loop structure is included.

Notes on kinematic modeling for multibody systems in space are made in [100], [21],

[30]. In [112], the generalized Jacobian matrix3 is introduced. It is utilized by the authors

in [19], where solution algorithms for the inverse kinematics of space manipulator systems

are presented.

3In Appendix E the structure of the generalized Jacobian matrix is derived.
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1.2.2 Trajectory and path planning for space manipulators

Trajectory planning for systems under nonholonomic constraints is a well known research

field. A robotic manipulator mounted on a free-floating satellite exhibits nonholonomic

behavior as a result of the nonintegrability of the angular momentum equation.

Up until now, different solutions to the path and trajectory planning problems for

space manipulators have been proposed. As mentioned in the previous subsection, the

concept of the generalized Jacobian matrix was introduced in [112]. It can be used for

continuous control of the end-effector without controlling the vehicle’s motion. A bidirec-

tional approach for motion planning of free-floating space robots was proposed in [73]. It

was shown that the final values of the state variables describing the system, depend not

only on the n joint variables but also on the history of their trajectories and do not remain

confined on a n-dimensional manifold. Such result clearly implies that, the end-effector

can reach a desired position and orientation with different values of the state variables,

even if only six joint are available. This indicates the presence of redundancy, in [75]

the authors call it nonholonomic redundancy and propose ways for its utilization for fa-

cilitating the trajectory planning problem. In [115] Vafa and Dubowsky proposed the

novel concept of a virtual manipulator which simplifies the kinematics and dynamics of a

space robot system. By solving the motion of a virtual manipulator (fixed in the center

of mass of the entire system) for a given end-effector trajectory, the motion of the base ↔
robot arm system can be obtained straightforwardly. Furthermore, using this approach

they formulated a tool called “disturbance map” and then extended the notation to an

“extended disturbance map” [110], [29] which suggests paths that result in low attitude

fuel consumption4. Using optimization techniques for performing reactionless trajectory

planning, as proposed in [20], [94] does not always converge to satisfactory results, where

providing initial guess for the optimization algorithm is of great importance. In [90], the

authors propose a manipulator design that provides a larger “reactionless workspace” and

address the null space planning problem. In [88], [92], configuration and path planning

for nonholonomic systems are discussed. The utilization of optimal control for redundant

systems is discussed in [1], [71], [99]. Almost smooth time-invariant control for planar

space manipulators is proposed in [67], where the authors discuss a stabilization technique

without disregarding the existence of dynamic singularities. In addition, controllability

issues related to serial space robot systems are discussed. A measure of the dynamic

coupling of space robot systems based on the momentum conservation law is introduced

in [120]. Such measure (based on a matrix relating the end-effector and base motions) can

4The application of the extended disturbance map for manipulators with more than 3 DOF is however
difficult.
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Figure 1.2: Chaser and target satellites.

be employed in order to aid the planning process.

1.2.3 Satellite capturing operation

In recent years, the capture of a free-floating target in orbit (Fig. 1.2) has been recognized

as a priority task. Its importance is apparent from the fact that in most cases capturing

operation should precede missions like servicing, inspection and assembly which are critical

for the survival of existing satellites in orbit. Here, some of the main approaches related

to satellite capture are outlined.

There has been a great deal of fundamental research in the area of space robotics and

though capturing a tumbling object in space is a well known problem, it is difficult to

distinguish one of the solutions proposed up to now, which can solve it readily. Discussing

the whole process from the trajectory planning to the post-impact control is an arduous

task. The nature of the problems occurring in the different phases of the capture can be

completely different so most of the researchers tend to separate the operation into closing
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in maneuver, approach5, impact and post-impact motion.

Most of the solutions presented up to now are from the viewpoint of force impulse

generated during the contact. Different strategies for its estimation and minimization

are presented in [130], [124], [117]. The concept of joint resistance model was introduced

in [125], furthermore, the authors proposed the so called impulse index and impulse ellip-

soid which adequately describe the force impulse characteristics. The effect of a “payload

impact” on the dynamics of a flexible-link space robot is discussed in [23]. The application

of impedance control when capturing a non-cooperative target is proposed in [128]. The

condition which guarantees that the target will not be pushed away after the contact is

clarified. A comprehensive discussion about the usage of the “reaction null space” is made

in [82], [83]. The authors utilize the null space of the coupling inertia matrix in order to

decouple the base and manipulator dynamics. Furthermore, they showed that obtaining

joint velocities using this approach does not influence the momentum distribution what-

soever. A detailed discussion on a momentum distribution in a space manipulator is made

in Chapter 4.

Other possible solutions to the capturing problem can be derived from the viewpoint of

the angular momentum of the target object. Grasping a target satellite without considering

its momentum will impose difficulties for the post-impact control and most probably the

capturing operation will fail. Different solutions are proposed up to now. One of them

utilizes a device with controllable momentum wheels (“space leech”), which has to be

attached to the target [116] and absorb the angular momentum. In [64], the idea of

rotational motion-damper is proposed. Using a contact/push based method, the angular

momentum from the target is transferred to the chaser satellite in portions. This could

result however, in separation from the target after each contact and therefore, the usage

of gas-jet thrusters for linear motion is unavoidable. This method might be useful if the

tumbling rate of the target is very large and direct capture is not possible. A similar

method using “impulsive control” is proposed by Yoshikawa et al. [131]. A verification

of the above strategy using experiment, is reported in [52]. In [76], Nakamura et al.

utilize a “tethered retriever” which is guided to the target through the tension force in the

tether and thrusters positioned on the retriever. In the post-impact phase, the angular

momentum of the target is “absorbed” in attitude devices positioned on the retriever.

In [111], the chaser satellite makes a fly-around maneuver in such a way that the capturing

operation can be conducted with small relative motion between the two systems. The

authors propose a “free motion path method,” which enables us to completely ignore the

non-linearity effect in the dynamics by taking advantage of the conservative quantities of

5Here, with approach, the approaching motion of a manipulator arm to a target satellite is implied.
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the system. In [69] using an extended Kalman filter, estimation of the target’s motion is

made. The authors assume that the inertia parameters of the target are known or can

be estimated. At a next step the centroid of the chaser satellite is repositioned (using

thruster power) to be along the angular momentum vector of the target satellite, and the

spacecraft is actuated in order to obtain a certain angular velocity which can facilitate the

manipulator approaching motion. In addition, experimental results are presented.

Other references include studies related to planning safe kinematic trajectories during

the closing in maneuver to a target object [63], [41], [42]. Some control aspects of a

capturing operation are studied in [39], [77], [62], [40], [91], [32]. The path planning

problem to a free-floating target for a manipulator with angular momentum is addressed

in [121], [122]. The capture of a spinning object using a dual flexible arm manipulator is

studied in [123]. A development of a laboratory simulator for motion study of free-floating

robots in relation to a target object is reported in [2]. Using this laboratory simulator,

design issues related to free-floating planar robotic systems in view of optimal chasing and

capturing operation, are addressed in [5]. Utilization of two free flyers for capture and

manipulation of an object in space is presented in [25]. Notes on dynamical modeling and

control of spacecraft-mounted manipulators during a capturing operation are made in [24].
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1.3 Contribution statement

The main contributions of this thesis are listed as follows:

• Systematic derivation of the equations of motion for open and closed-loop free-flying

manipulator systems.

• Provide further insight into the problems occurring while capturing a tumbling satel-

lite.

• The Holonomic Distribution Control is introduced for planning reactionless Cartesian

paths to a stationary target satellite.

• Strategy using bias angular momentum (the Bias Momentum Approach) that can

facilitate the trajectory planning and post-impact motion is introduced.

• Trajectory generation procedure in the case when the Bias Momentum Approach

is utilized, is proposed. Different state variables for the optimization algorithm

employed are compared.

• Distributed Momentum Control to be used during the post-impact phase of a cap-

turing operation is introduced. It manages the momentum in the system in such a

way that no base angular motions occur.

• Utilization of the Reaction Null Space Control for base attitude control during the

post-impact phase (the form of the control used is different from the initially pro-

posed one).



Chapter 2

Dynamics of free-flying
manipulator systems

Dynamics of mechanical systems is a well studied field in which many books have been

written [119], [107], [45], [102], [51], [38], [4], [68], [101], [57], [22], [7]. Building a dynamical

model is of great interest since it provides a relation between the joint actuator torques

and the motion of the structure. A variety of formulations which differ in complexity

and level of efficiency are available. The creation of most of them came as a solution to

practical problems. It is interesting to note that, the differential equations governing the

motion of a multibody system have been known since the time of Newton and Lagrange,

however, their application for solving practical problems began not more than 40 years

ago when the automobile industry and projects related to space exploration demanded

precise mathematical models to be used for prediction of the motion of the systems of

interest. Since the multibody structure of a spacecraft could not be ignored, there was a

considerable interest in doing the dynamic analysis before the actual system is constructed

and flown. The “design and try” strategy was unacceptable, therefore the development of

highly reliable algorithms for dynamic simulations was a priority issue.

Investigation of multibody models of spacecraft vehicles on one hand, and models from

the automobile industry on the another, gave birth to two different classes of formulations.

The first one, referred here as global formulations, treat all kinds of mechanical systems

(open-loop, close-loop, loosely or severely constrained) in the same way. Such formulations

are simple and robust. They treat each component of a system separately and interconnect

it to the others through constraint equations. They have a large range of applications,

however, their efficiency is low [97].

The second class of formulations is referred to as topological formulations. They are

developed in a way that takes advantage of the system’s topology. This does not only

increase the efficiency of the dynamic simulations, but gives important insight for solving

problems related to the behavior of the particular system under examination. The latter

9
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advantage is of great importance since it can facilitate the search for solutions to problems

related to planning and control.

The goal of this chapter is to present a systematic derivation of the equations of motion

for both open and closed-loop free-flying manipulator systems. The approach presented

can be considered to be a part of the group of topological formulations. Its implementation

is straightforward and will create a framework for the rest of the thesis. A big part of the

formulation presented is based on the work in [45].

For obvious reasons it is not possible to cover the entire spectrum of problems arising

while the equations of motion are formulated. This is not the aim here, henceforth only

issues relevant to the main topic of this thesis will be included.

This chapter is organized as follows. In Section 2.1 the most commonly used coordi-

nates for the formulation of the dynamical equations of a multibody system are outlined.

In Sections 2.2 and 2.3 the role played by the subspace of allowable motions in the dy-

namical formulation is discussed. Section 2.4 contains derivation of the motion equations

for both open and closed-loop systems. Finally, in Section 2.5 a summary of the main

variables used in the dynamical formulation is made.

2.1 Choice of coordinates

The first dilemma encountered when one needs to choose a way to describe the configura-

tion and motion of a multibody system is what kind of coordinates should be utilized. This

choice is not unique, and depends on the particular structure of the system of interest.

The first practical systems studied were with open-chain topology and relative coordinates

were the best choice. However, for a general system, where closed-loops are present, con-

sidering the advantages that different sets of coordinates present is beneficial. Next an

outline of the commonly used coordinates is made. The advantages and disadvantages of

each set are emphasized.

2.1.1 Independent coordinates

One of the most important characteristics of independent coordinates is that their number

coincides with the number of degrees of freedom of the system, and hence, this is the

minimal possible representation that could be utilized. One advantage that this type of

coordinates provide, is that there is no need for the Lagrange multipliers to be calculated,

and hence, a big part of the calculation burden is dropped. The equations are compact

and constraint stabilization problems do not occur. Furthermore, very efficient explicit

integrators could be utilized [46].

The case when independent coordinates are used has two main disadvantages. First,
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Figure 2.1: Comparison between different types of coordinates

such coordinates must be selected, and changed every time when they become inappropri-

ate1. This procedure is closely related to the particular integration algorithm utilized and

leads to restarting it each time a change of coordinates occur [45] p. 172. The second prob-

lem is related to the calculation of positions, velocities and accelerations for the remaining

parts of the multibody system, which depend on the current choice of independent coor-

dinates. The positions of the dependent coordinates are usually calculated using methods

that iteratively find a solution close to a given initial guess (the most commonly used

one is the Newton-Raphson method). In practice, since the configuration of a mechanical

system at time t is known, it can be used as an initial guess, hence, finding the correct

solution for t + ∆t is practically guaranteed, however, this iterative calculation process

slows down the simulation. On the other hand, finding the velocities and accelerations of

the dependent coordinates (with independent velocities and accelerations known) is a far

easier problem.

2.1.2 Dependent coordinates

One way to overcome the problems stated in the previous subsection is to use different type

of coordinates. In particular, coordinates that describe the motion of each body of the

mechanical system. This will clearly eliminate the need of solving the positioning problem

at the end of each iteration. The main difference between independent and dependent

coordinates is that the latter ones are interconnected with constraint equations. Three

different types of dependent coordinates will be outlined in the sequel.

2.1.2.1 Relative coordinates

Relative coordinates define the position of each element (link) in relation to the previous

one in the kinematic chain by using the parameters corresponding to the relative DOF
1With “inappropriate” it is implied that they no longer describe uniquely the motion of the system.
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allowed by the joint linking these elements. Fig 2.1 (a) shows an example of a manipulator

system described using relative coordinates. As can be seen, they represent a system with

a minimal number of dependent coordinates. In the particular case of open-chain systems,

the number of relative coordinates coincides with the number of DOF, hence, they are

independent and no constraint equations are necessary.

Advantages:

(1) Reduced number of coordinates. Especially suited for open-chain systems.

(2) The consideration of the DOF of each joint. This is an important advantage when

the joint has an actuator attached, since it can be controlled directly.

Disadvantages:

(1) Since the absolute motion of each body depends on the motion of the lower links of

the manipulator chain, the mathematical formulation can be more involved.

(2) They lead to equations of motion with matrices which, although small, are dense,

and hence, expensive to evaluate.

(3) They require some preprocessing work to determine the independent constraint equa-

tions (in case of a closed-loop system).

Even though the mass matrix of the system is dense, the evolution of recursive com-

putational techniques makes it possible to factorize and invert it in an efficient way [6].

2.1.2.2 Reference point coordinates (Cartesian)

The reference coordinates try to overcome the difficulties of the relative coordinates by

directly defining the position and orientation of each element with respect to the inertial

frame (Fig 2.1 (b))

Advantages:

(1) The position and orientation of each element is directly determined.

(2) The matrices appearing in the equations of motion are sparse.

Disadvantages:

(1) Much larger number of variables is required.

(2) In the 3D case the definition of orientation for each element is complicated.
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2.1.2.3 Natural coordinates (fully Cartesian)

Natural coordinates represent an interesting alternative to the previous two sets of coor-

dinates. Also called fully Cartesian coordinates they were first introduced by Garcia de

Jalón [43], [44]. The idea is to use a set of points on each element to define the position of

the system. The minimal set of points for each element is two. Note that since each body

has two points, its position and orientation are fully determined, hence, there is no need to

use an additional variable representing orientation as in the reference point coordinates.

The rules for choosing the set of points are explained in details in [45]. As can be seen in

Fig 2.1 (c), if the points on each element are positioned in the joints then two adjacent

elements can share one point. In general, the number of natural coordinates tends to

be an average between the number of relative coordinates and the number of reference

coordinates. In Fig 2.1 (a) the number of coordinates is three, in Fig 2.1 (b) it is nine and

Fig 2.1 (c) it is six (note that in the case depicted, the position (x1, y1) is constant).

Advantages:

(1) The constraint equations that arise are quadratic (or linear), hence, their Jacobian

matrix is a linear (or constant) function of the natural coordinates.

(2) The natural coordinates are composed by purely Cartesian variables and therefore

are easy to define and represent geometrically.

Disadvantages:

(1) The constraint equations corresponding to different angular quantities in the same

mechanical structure might be different [45] p. 31.

Coordinates to be utilized:

Through the thesis, a set of relative coordinates will be used to describe the manip-

ulator motion. Such choice allows for an important class of mechanical systems to be

simulated without constraint equations. Of particular interest are manipulators used in

orbit which in most cases are with open-loop structure. When constraints do arise they

will be fewer in number, making it much easier to solve them efficiently. Closed loops can

appear when a target object is captured using a dual-manipulator system (such example

will be discussed in Section 5.4). In this particular case, using independent relative co-

ordinates for the manipulator motion can give an important insight which can be helpful

for the application of different control strategies. In addition, the base motion will be

described using a set of reference point coordinates.
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2.2 Space of allowable motions (SAM)

Up to now, a distinction between independent and dependent sets of coordinates was

presented. In this section, the relation between them will be made. In other words, the

problem of extracting an independent set of coordinates if a dependent one is given will be

discussed. This is a purely kinematical problem, however, it constitutes very important

points for the multibody dynamic formulation to be used hereafter.

In this section, it will be shown that the dependent velocities of the components of a

constrained multibody system (Ẏ ∈ Rk) belong to a very particular vector space called

the space of allowable motions. It will be shown that this vector space coincides with the

null space of the Jacobian matrix of the constraint equations. The case when the system

of interest is scleronomous2 will be examined.

Let us consider a system of m independent holonomic constraints that can be expressed

using the following algebraic equation:

Φ(Y c) = 0 ∈ Rm (2.1)

where Y c is a set of dependent Cartesian coordinates describing the configuration of the

system.

Remark:
It should be noted that, it is not necessary for the components of the Cartesian

velocity vector Ẏ to be the derivatives, term by term, of Y c ( [119], [38], Section 2.3 ).
For example, the velocity Ẏ j of body j can be described using vj and ωj , which stand
for the linear velocity of a reference point on body j and angular velocity, respectively.
On the other hand, the configuration of body j can be represented by the position of
a reference point, and a set of Euler angles whose derivatives are not equivalent to ωj .
Bear in mind that ωj is a nonintegrable variable, in other words, the derivatives of no set
of three parameters form the components of the angular velocity vector. The dimension
of Y c is not going to be even specified, since different sets for attitude description like
Euler parameters, quaternions, direction cosine matrix can be used. Hereafter, it is
assumed that the derivatives of the dependent coordinates Ẏ c can always be related to
the velocity vector Ẏ by using a positive-definite matrix U(Y c) (see [38], Table 2.3),
hence:

Ẏ c = U(Y c)Ẏ (2.2)

The importance of equation (2.2) will be emphasized in Section 2.4.1 and at the end of
this chapter, where a short note on integration of the motion equations is made.

From the above discussion it is clear that the definition of a variable Y ∈ Rk, who’s
derivative is equal to Ẏ is not possible in the general case. Nevertheless, it will be
employed to represent partial derivative of a generic function F with respect to the
k system dependent Cartesian coordinates (∂F/∂Y ). Bear in mind that the actual

2The constraint equations do not depend explicitly on the time variable.
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computation of the partial derivatives will be made using (∂Ḟ/∂Ẏ ), however the latter
notation is not intuitive. For more details see Section 2.4.2.2 and equation (2.50).

Differentiating (2.1) twice with respect to time leads to (the chain rule is used):

ΦY Ẏ = 0 (2.3)

ΦY Ÿ = −Φ̇Y Ẏ = c (2.4)

where ΦY ∈ Rm×k = ∂Φ/∂Y is the Jacobian matrix of the constraint equations. Note

that f = k − m > 0 are the degrees of freedom (DOF) of the system. It can be seen that

in order Ẏ to satisfy equation (2.3) it must be in the null space of ΦY . This space (to be

denoted by R ∈ Rk×f ) is spanned by f independent vectors of dimension k. From linear

algebra it is known that in order for a vector to belong to a given vector space V it should

be a linear combination of the members of V . Hence, Ẏ can be formed in the following

way (for a comprehensive discussion on linear spaces see [109]):

Ẏ = R1ż
i
1 + R2ż

i
2... + Rf żi

f =
f∑

j=1

Rj ż
i
j (2.5)

where Rj is the jth column of R and the coefficients of (2.5) form the vector of independent

velocities żi. Hence, it can be concluded that the dimension of the space of allowable

motions which coincides with the number of vectors that span the null space of ΦY , is

equal to the DOF of the multibody system3. This fact is very useful, because it provides

a way to project the vector of independent velocities żi onto the null space of ΦY and

obtain the dependent velocity vector Ẏ . This can be expressed by the following equation

of paramount importance:

Ẏ = Rżi (2.6)

where

ΦY R = 0 (2.7)

The discussion can be made with respect to any set of dependents velocities, nevertheless

for clarity, Ẏ is assumed to be a set of Cartesian velocities, including angular velocity ωi

of body i, and the linear velocity of its center of mass vi.

We are particulary interested in ways to compute the space of allowable motions R.

In view of the fact that, the columns of R span the null space of ΦY , the authors of

[106] proposed the direct utilization of the SV (singular value) decomposition for the

computation of R. As noted in [45] p. 101, such an iterative method can gradually decrease
3For example, for an open chain manipulator system mounted on a free-floating base, the dimensions

of � will be (6n + 6) × (n + 6), where n in the number of available joints.
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the efficiency of the simulation, and its application is not desired at each iteration step.

This fact although important, from the viewpoint of simulation efficiency, is not the only

reasoning for not using SV decomposition for the direct computation of R. As noted by

the authors of [132], [33], [68] p. 422-433 (see Example A.26.), viewing a mathematical

model of a physical system only as numbers and arrays of numbers, masks the physics of

the problem, and can lead to lost insight. When arrays with dimensionally nonuniform

components are used (as is the case with Φ4), a consistent analysis to avoid errors should

be made. For example, the summation of two vectors a and b, characterized by differen

dimensional units (such as meter, second) is physically meaningless, and hence, disallowed.

Furthermore, a and b do not form a vector space (for an exact definition see [34]), therefore

the definition of orthogonality (tangent space), or magnitude, of an array of numbers

containing a and b is not possible. The problems outlined above typically appear when

motion planning algorithms have to be implemented [57], [58].

In general, without knowledge of the specific structure of the matrix ΦY , the definition

of its null space (although numerically possible), should not be considered. Furthermore,

the understanding of the physical properties standing behind a given matrix R is very

important, as will become apparent in the following chapters.

Hereafter, R will play an important role in the formulation of the dynamical equations,

hence, we find it necessary to examine some of its properties first.

2.3 Role of SAM in the dynamic analysis

Matrix R has been implicitly or explicitly referred to by many authors. Among them

Kane and Levinson [51], Nakamura [72], Garcia de Jalón and Bayo [45], Kamman and

Huston [49] and others. The best way to demonstrate its role for facilitating the dynamic

formulation is by the following example.

2.3.1 Example: Lagrange multipliers elimination

In general, the dynamics of a manipulator system can be expressed using its kinetic (T ) and

potential (V ) energy. By forming the Lagrangian La = T − V and then using Hamilton’s

principle, one arrives at the famous Lagrange formulation of the equation of motion [37]:

d

dt
(
∂La

∂Ẏ
) − ∂La

∂Y
+ ΦT

Y λ = Qex (2.8)

where Qex is the vector of generalized external forces acting along the dependent coor-

dinates. ΦY is the Jacobian matrix of the constraint equations, λ ∈ Rm is a vector of

unknown Lagrange multipliers and (·)T denotes a matrix transpose operator. The third
4Depending on the type of constraints imposed.
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term on the left-hand-side (LHS) of equation (2.8) accounts for the constraint forces in

the system. The kinetic energy of a multibody system can be expressed as follows:

T =
1
2
Ẏ

T
M (Y c)Ẏ

where M is symmetric, positive-definite and (in general) configuration dependent ma-

trix containing mass and inertia properties. With such notation, equation (2.8) can be

expressed as:

MŸ + ΦT
Y λ = Q (2.9)

where Q accounts for the external forces plus all the velocity-dependent inertial terms.

The solution of (2.9) is not a trivial problem. It can be done using a number of different

methods, and each method leads to different complexity and accuracy.

Equations (2.9) represents k equations in k + m unknowns (the k elements of vector

Ÿ and the m elements of vector λ). In order to have a sufficient number of equations, it

is necessary to supply m more. One possible choice is to use (2.9) in combination with

(2.1). This results in a system of index 3 differential algebraic equations (DAE)5. In order

to avoid index 3 DAE, equation (2.4) can be utilized instead, leading to:[
M ΦT

Y

ΦY 0

] [
Ÿ
λ

]
=
[

Q
c

]
(2.10)

which is a system with k + m equations in k + m unknowns. (2.10) can be solved simul-

taneously for the accelerations and Lagrange multipliers by directly taking the inverse of

the leading matrix, or alternatively, first equation (2.9) can be solved to obtain:

Ÿ = M−1Q − M−1ΦT
Y λ (2.11)

then by substituting (2.11) into (2.4) and solving for the Lagrange multipliers one obtains:

λ = (ΦY M−1ΦT
Y )−1(ΦY M−1Q − c) (2.12)

Consequently, introducing (2.12) into (2.11) gives the solution for the accelerations Ÿ .

The main advantage of this method is that it permits the computation of the force

associated with the constraints with a minimum additional effort. Equation (2.12) yields

λ directly without having to solve the inverse dynamics problem. However, a drawback

can be found in the fact that if the system of interest is with an open-loop structure, the

computation of Lagrange multipliers is an unnecessary burden.
5DAE’s are classified according to their differential index or simply index, defined as the number of

times that the DAE has to be differentiated to obtain a standard set of ODE. The higher the index the
more complex the integration becomes. Nonlinear DAE can be classified in two major groups: implicit
and semi-explicit the latter one is the type of equation that arises commonly in constrained multibody
systems, optimal control and trajectory planning problems.
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Utilization of R

Apart from increasing the equations in the system (as done above), an alternative

approach by decreasing the number of unknowns can be taken. Multiplying equation (2.9)

from the left by RT , the following equation is obtained:

RT MŸ + RT ΦT
Y λ = RT Q (2.13)

However, by virtue of equation (2.7) the term containing the Lagrange multipliers can be

canceled, for one to obtain:

RT MŸ = RT Q (2.14)

Combining (2.14) with the constrained equation (2.4) (as done in (2.10)), one arrives at:[
RT M

ΦY

]
Ÿ =

[
RT Q

c

]
(2.15)

This is a system with k equations in k unknowns which can be solved for the dependent

accelerations Ÿ . Equation (2.15) does not explicitly contain any independent coordinates,

rather they are implicitly considered via the matrix R (this notation was initially intro-

duced by Kamman and Huston [49]).

It should be noted that by using R it was possible to eliminate the Lagrange multipliers

from the equation of motion, and decrease the dimensions of the system to be solved. The

solution of both (2.10) and (2.15) suffer from stabilization problems as a result of the

fact that the constraints are defined only using equation (2.4), and the state variables are

dependent. In theory, this should not be a problem, and (2.10) or (2.15) should guarantee

that the constraint equations are satisfied at any time, however, in practice constraint

violations occur. The reason for this is the existence of a round-off error during the

integration process, which is accumulated and increases with time. Therefore a Baumgarte

[15], Penalty method or other type of stabilization algorithms should be employed (for

more information see [8], [9], [10]). Nevertheless, it should be noted that (2.15) has to be

stabilized only for long simulations. As far as (2.10) is concerned, if stabilization is not

applied the results are unacceptable for all but short simulations.

Even though (2.15) is not the form of equation of motion that will be utilized here,

it gives a clear idea about how the dimensions of the system can be reduced. This is

important since our goal is to derive the dynamic equations only with respect to a set of

independent variables.

There are two main problems of the formulation in (2.15) that should be distinguished:

(1) Even if the system of interest is with open-loop structure, the constraints Φ and

their Jacobian matrix ΦY has to be formed.
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(2) Computation of the matrix R that relates the dependent Cartesian velocities with

an independent set of variables using factorization of ΦY is not efficient. As already

noted, the direct application of SV decomposition for obtaining the null space of ΦY ,

is not applicable in general (see Section 2.2).

In order to find a solution to these problems and acquire a better understanding, in

the next section the derivation of the equations of motion with respect to an independent

set of coordinates is performed in four stages:

S1) The motion equations and the constraints of a mechanical system are formulated

in Cartesian coordinates.

S2) All the closed-loops in the system are opened6, and the constraint equations

are partitioned in two groups. The first one corresponds to the constraints of the open-

chain system, and the second one is formed by the constraints needed to close the loops

previously opened.

S3) A velocity transformation7 switches from Cartesian velocities to relative velocities

corresponding to the open-chain system. Hence, the only constraints left are the one for

the cut joints.

S4) A second velocity transformation that keeps only a subset of independent velocities

is applied.

2.4 Formulation in independent coordinates

In order to express the four stages explained in the previous section in mathematical

fashion, the following notation is introduced: The constraints that correspond to the

open-loop multibody system will be denoted by Φo ∈ Rmo×k, and the constraints that

close the opened loops will be denoted by Φc ∈ Rmc×k, with mo and mc being the number

of constraint equations (mo + mc = m). Consequently, (2.3) can be rewritten as:[
Φo

Y

Φc
Y

]
Ẏ = 0 (2.16)

Taking into consideration the partitioning above, equation (2.9) becomes:

MŸ + ΦoT
Y λo + ΦcT

Y λc = Q (2.17)

where λo and λc are the Lagrange multipliers associated with Φo
Y and Φc

Y , respectively.

λ =
[

λo

λc

]
M = diag(M 0, M1, ..., Mn) Q = [QT

0 , QT
1 , ..., QT

n ]T

6The standard way to open a loop is by cutting a joint [72], however, some researchers [56] proposed
to cut a link. The reasoning for this is that in a cut joint friction cannot be modeled.

7Velocity transformation means transformations from one set of velocities, describing the system’s mo-
tion to another.
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M i =
[

miE3 0
0 Ii

]
Qi =

[
F i

N i − ω̂iIiωi

]

In the equations above, mi is the mass and Ii is the inertia tensor of body i (i = 0

represents the base body) about its center of mass (expressed in the inertial frame). F i

and N i are the forces and torques applied to the center of mass of body i, (̂·) denotes a

skew-symmetric representation of a three dimensional vector and Ep ∈ Rp×p (p = 3) is a

unit matrix.

Next, an efficient two step procedure for the solution of (2.17) that deals separately

with the constraints Φo and Φc will be presented.

2.4.1 Open-loop systems

In this subsection, it is assumed that the manipulator system of interest has a tree struc-

ture. If closed-loops are intrinsic in its design, they are opened through cutting a joint.

For simplicity each joint will be assumed to have only one translational or rotational DOF.

This does not impose a limitation on the formulation, since complicated joints with more

that one DOF can be modeled using those two primitives. Furthermore, the manipulator

is mounted on a free-floating base with three translational and three rotational degrees of

freedom.

First, the upper part of equation (2.16) will be considered. It implies that the vector

of dependent Cartesian velocities Ẏ should belong to the subspace of allowable motions,

spanned by the null space of Φo
Y . This space will be denoted by Ro, and hence, the

following relation should hold true:

Φo
Y Ro = 0 (2.18)

As discussed in Section 2.2, the vector of dependent Cartesian velocities Ẏ can be related

to an independent set of velocities ż by means of Ro, where the dimension of ż coincides

with the DOF of the open-loop system, hence:

Ẏ = Roż (2.19)

Equation (2.19) represent a velocity transformation between the dependent Cartesian ve-

locities and a set of independent velocities ż. Note that since a free-floating base is con-

sidered as well, ż consists of the manipulator relative velocities plus a set of six Cartesian

velocities for the base body, hence:

ż =
[

ẋb

φ̇

]
(2.20)

since ẋb is included in Ẏ as well, the entries of Ro corresponding to the base will be trivial.
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Differentiation of (2.19) with respect to time leads to:

Ÿ = Roz̈ + Ṙ
o
ż (2.21)

Substitution of (2.21) in (2.17) and multiplication from the left with RoT results in:

RoT M (Roz̈ + Ṙ
o
ż) + RoT ΦoT

Y λo = RoT Q

Note that since the system is considered to have a tree structure, the term ΦcT
Y λc does

not appear in the equation. After some formula manipulation, noting that RoT ΦoT
Y =

(Φo
Y Ro)T = 0 one obtains:

RoT MRoz̈ + RoT MṘ
o
ż − RoT Q = 0

Using the definition of Q, the above equation can be represented in a more convenient

way:

RoT MRoz̈ + RoT MṘ
o
ż − RoT Qn = RoT Qex (2.22)

where

Qni
=
[

0
−ω̂iIiωi

]
Qexi

=
[

F i

N i

]
(i = 0, 1, ..., n)

The component on the RHS of equation (2.22) represents a map of the column vector of

external wrenches Qex ∈ R(6n+6) on the equivalent joint torques and base forces/torques.

Hence, it can be concluded that Ro has the structure of a Jacobian matrix. More precisely,

it contains the partial derivatives of the k dependent Cartesian coordinates with respect to

the motion of the base body and manipulator joints (and will be referred to as augmented

Jacobian matrix). Its computation can be performed in a straightforward fashion, as will

be shown in the following subsection.

Since in our notation as generalized coordinates are chosen the n manipulator joints

and six base motions, the only way the external forces Qex can alter the momentum of the

system (in the simulation) is if they are properly mapped as forces/torques applied to the

base body8. Such mapping is successfully performed by the augmented Jacobian matrix

Ro. Without any abuse to the notation in (2.22) one can add a separate component for

the joint torque (τ ) to obtain:

H

[
ẍb

φ̈

]
+ cn =

[
0
τ

]
+ RoT Qex (2.23)

where

H = RoT MRo cn = RoT MṘ
o
ż − RoT Qn

8The torques applied in the manipulator joints do not alter the momentum of the manipulator system.
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This is the final form of the equations of motion of a tree system formulated with respect

to a set of independent coordinates, where ẍb stands for the base linear and angular

accelerations. Equation (2.23) does not contain any constraint equations and adapts well to

both implicit and explicit integrators [97]. In order to find the solution for the acceleration

vector z̈, once the external and joint torques are known, the leading matrix H9 has to be

inverted to obtain:

[
ẍb

φ̈

]
= H−1(

[
0
τ

]
+ RoT Qex − cn) (2.24)

It should be noted that integration of z̈ leads to obtaining the system’s velocities ż, which

however cannot be directly integrated to yield positions. This comes from the fact that

ẋb contains the base angular velocity, which is known to be nonintegrable. In order to

overcome this problem one can use a transformation as in equation (2.2), which will lead to

a set of integrable variables. In [38], Table 2.3, eight alternatives for such transformation

are included. Among them are the derivatives of: Direction cosines, Axis/angle variables,

Euler-Rodriguez parameters, Euler parameters, Euler angles. Choosing a particular one is

related to the nature of the problem to be solved, and integration routine utilized. Some

additional notes regarding integration of the equations of motion will be made at the and

of this chapter.

2.4.1.1 Computation of the non-linear term cn and matrix Ro

The computation of the derivative of Ro in order to obtain the non-linear term cn is quite

an expensive procedure. Fortunately, it does not need to be computed numerically. From

equation (2.21) it can be noted that if the independent accelerations z̈ are set equal to

zero, the term Ṙ
o
ż can be computed recursively as the vector of dependent Cartesian

accelerations Ÿ . The components of the vector Ẏ were already defined to be the angular

velocity ωi of body i and the linear velocity of its center of mass vi.

Ẏ i =
[

vi

ωi

]

It should be noted that, simplifications could be achieved using different representations

[79], [97], [53]. The computation of Ẏ (for simplicity only revolute joint will be considered)

can be performed as follows (see Fig. 2.2):

ωi = ωk + uiφ̇i (2.25)

9Since � = �oT��o is symmetric and positive-definite its inverse exists. Each component of � is
defined in Appendix D.
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Figure 2.2: Two consecutive bodies connected by a rotational joint. All vectors are ex-
pressed in the inertial coordinate frame.

vi = vk + ωk × tk + ωi × si

vi = vk + ωk × tk + (ωk + uiφ̇i) × si

vi = vk + ωk × tk + ωk × si + ui × siφ̇i

vi = vk + ωk × (tk + si) + ui × siφ̇i

tk + si = ri − rk = pi

vi = vk + ωk × pi + ui × siφ̇i (2.26)

Note that, the indices i and k need not be consecutive numbers. Link k is the lower

connection of link i (a link can have only one lower and multiple upper connections).

Combining equations (2.25) and (2.26) leads to:

Ẏ i =
[

vi

ωi

]
=
[

E3 −p̂i

0 E3

][
vk

ωk

]
+
[

ui × si

ui

]
φ̇i (2.27)

where −p̂iωk = ωk × pi. Equation (2.27) can be rewritten as:

Ẏ i = kBiẎ k + biφ̇i (2.28)

kBi =
[

E3 −p̂i

0 E3

]
bi =

[
ui × si

ui

]

Before the vector of dependent Cartesian accelerations Ÿ is derived, a parallel be-

tween equations (2.28) and (2.19) will be made. Let us consider the tree system depicted
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in Fig. 2.3. It consists of six links mounted on a free-floating base body. Writing the

components of (2.28) for this system results in:

Ẏ 0 = E6 Ẏ 0

Ẏ 1 = 0B1Ẏ 0 + b1φ̇1

Ẏ 2 = 1B2Ẏ 1 + b2φ̇2 = 1B2
0B1Ẏ 0 + 1B2b1φ̇1 + b2φ̇2

Ẏ 3 = 2B3Ẏ 2 + b3φ̇3 = 2B3
1B2

0B1Ẏ 0 + 2B3
1B2b1φ̇1 + 2B3b2φ̇2 + b3φ̇3

Ẏ 4 = 2B4Ẏ 2 + b4φ̇4 = 2B4
1B2

0B1Ẏ 0 + 2B4
1B2b1φ̇1 + 2B4b2φ̇2 + b4φ̇4

Ẏ 5 = 0B5Ẏ 0 + b5φ̇5

Ẏ 6 = 5B6Ẏ 5 + b6φ̇6 = 5B6
0B5Ẏ 0 + 5B6b5φ̇5 + b6φ̇6

where Ẏ 0 =
[
vT

0 ωT
0

]T are the velocities of the base body. For the computation of Ẏ 4,

Ẏ 2 was used as a lower body connection, since the motion of link 4 does not depend on the

motion of link 3 and joint 3 (at least in kinematical sense). Writing the above equations

in a matrix form results in:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẏ 0

Ẏ 1

Ẏ 2

Ẏ 3

Ẏ 4

Ẏ 5

Ẏ 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

bJ b
bJm

J b Jm

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẏ 0

φ̇1

φ̇2

φ̇3

φ̇4

φ̇5

φ̇6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.29)

where bJm ∈ R6×n is the Jacobian of the base with respect to the motion of the links and

is a zero matrix (since the base is the lowest link in the kinematic chain). bJ b ∈ R6×6 = E6

is the Jacobian of the base with respect to the base motion. J b and Jm are the Jacobian

matrices of each link with respect to the base and other links motion, respectively.

J b ∈ R6n×6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0B1
1B2

0B1
2B3

1B2
0B1

2B4
1B2

0B1
0B5
5B6

0B5

⎤
⎥⎥⎥⎥⎥⎥⎦

Jm ∈ R6n×n =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 0 0
1B2b1 b2 0 0 0 0
2B3

1B2b1
2B3b2 b3 0 0 0

2B4
1B2b1

2B4b2 0 b4 0 0
0 0 0 0 b5 0
0 0 0 0 5B6b5 b6

⎤
⎥⎥⎥⎥⎥⎥⎦
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Figure 2.3: A tree manipulator system mounted on a free-floating base.

Comparison of equations (2.29) and (2.19) yields the contents of matrix Ro:

Ro =
[

bJ b
bJm

J b Jm

]
(2.30)

The matrix B has the following properties:

jBi
kBj = kBi

iBi = E6
kBT

i = iBk (2.31)

If the nonzero entries of the Jacobian matrix Ro are substituted with ones10, the path

connectivity matrix P c for the system in Fig. 2.3 is obtained (it is also called accessibility

matrix [119], [118]). The ith row of P c represents link i, and the columns stand for the

joints that influence its motion (in the representation below, in squares are included the

indices of the rows and columns, where i=0 and j=0 refer to the base). The matrix

P c can be constructed at a preprocessing stage (before the actual simulation) only from

information about the connectivity structure of the system, and can be useful for the

kinematic and dynamic analysis.

P c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 i=0

1 1 0 0 0 0 0 i=1

1 1 1 0 0 0 0 i=2

1 1 1 1 0 0 0 i=3

1 1 1 0 1 0 0 i=4

1 0 0 0 0 1 0 i=5

1 0 0 0 0 1 1 i=6

j=0 j=1 j=2 j=3 j=4 j=5 j=6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that, since the numbering of the n joints and links is made from the “roots” to the

“leaves” of the kinematic tree, the upper triangular part of P c is always filled with zeros11.
10The components of �b and �m are with dimensions 6 × 6 and 6 × 1, respectively. Each of them is

substituted by a scalar (zero or one).
11A notation using opposite numbering can be utilized as well, as suggested by Negrut, Serban and

Potra [79].
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Using the entries of matrix P c, the general formulation for the computation of the variable

components of Ro becomes (the first property of B from equation (2.31) is used):

J i
b ∈ R6×6 = 0Bi (2.32)

J (i,j)
m ∈ R6×1 = jBibj (2.33)

for (i, j = 1, 2, ..., n) such that P i,j
c = 1 (only combinations of i and j that correspond to

element 1 in matrix P c).

The so constructed matrix Ro satisfies equation (2.18). Note that the formulation

of the constraint equations Φo was not even necessary. The method presented is general

and systematic. It is not recursive and can be applied independently for the computation

for each body, hence, it can take full advantage of parallel computer architectures. The

procedure in equations (2.32) and (2.33) is computationally efficient, and most importantly

reveals the structure of the null space of Φo
Y . At a next step, Jm can be represented as a

product of two matrices Jm = Jn
mJd

m

Jn
m =

⎡
⎢⎢⎢⎢⎢⎢⎣

E6 0 0 0 0 0
1B2 E6 0 0 0 0
1B3

2B3 E6 0 0 0
1B4

2B4 0 E6 0 0
0 0 0 0 E6 0
0 0 0 0 5B6 E6

⎤
⎥⎥⎥⎥⎥⎥⎦

Jd
m =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 0 0
0 b2 0 0 0 0
0 0 b3 0 0 0
0 0 0 b4 0 0
0 0 0 0 b5 0
0 0 0 0 0 b6

⎤
⎥⎥⎥⎥⎥⎥⎦

where Jm is called the natural orthogonal complement (NOC) (the terminology is intro-

duced by Angeles and Lee [3]) and the product Jn
mJd

m is called the decoupled natural

orthogonal complement (DeNOC) (introduced by Saha [98]). Though such separation

does not introduce changes in the form of the equations of motion (2.23), it brings further

insight into the problem.

As already mentioned, further simplifications could be achieved by a different choice

for the components of Ẏ . Merely by using different dependent Cartesian velocities, the

authors of [46] are able to simplify the structure of Ro (in their notation the coupling

elements below the main diagonal disappear), leading to a more concise and faster dynamic

formulation.
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Finally, the dependent Cartesian accelerations are found through differentiation of

equation (2.28):

Ÿ i = kBiŸ k + kḂiẎ k + biφ̈i + ḃiφ̇i (2.34)

kḂi =
[

0 − d
dt p̂i

0 0

]
ḃi =

[
d
dt(ui × si)

d
dt(ui)

]

The components of kḂi and ḃi are derived in Appendix A.

In order to demonstrate the simplicity and validity of the formulation presented in

this section, a library of Matlab functions that perform the dynamic computation for a

multibody system was developed. They can be downloaded at:

http://www.astro.mech.tohoku.ac.jp/ m̃itko

2.4.2 Closed-loop systems

The approach adopted in the previous subsection is very convenient because the equations

of motion can be extended to the case when closed-loops exist with a minimal effort.

Recall that up to now only the open loop constraints Φo were considered. It was assumed

that the manipulator system is with open tree structure, or if closed-loops are intrinsic in

the design they are opened through cutting a joint. Hereafter, the remaining constraints

Φc which correspond to the joints that were cut will be imposed.

Equation (2.23) was formulated with respect the independent coordinates in case of a

tree structure. If closed-loops exist the relative coordinates cease to be independent and

the DOF of the system are decreased. Hereafter, the following notation will be utilized:

ż =
[

żd

żi

]
(2.35)

where żi are a set of truly independent velocities. Again, starting point for the discussion

is equation (2.16). Its lower part implies that the dependent Cartesian velocity vector Ẏ

should be a linear combination of the vectors spanning the null space of Φc
Y . In order for

the new constrains (Φc) to be accounted for, they should be included in the equation of

motion (2.23). Starting from equation (2.17) and performing again the derivation process

from the previous subsection, however, this time considering the term ΦcT
Y λc as well, results

in:

Hz̈ + cn + ΦcT
z λc =

[
0
τ

]
+ RoT Qex (2.36)

where Φc
z = Φc

Y Ro can be interpreted as the Jacobian of the closed loop constraints with

respect to the independent coordinates describing the tree system. In the same fashion
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as discussed regarding Y in Section 2.2 (see the Remark) it can be concluded that, the

definition of a variable z ∈ Rn+6 who’s derivative is equal to ż is not possible, because

of the nonintegrability of ω0. Nevertheless, z will be employed to represent a partial

derivative with respect to the n relative coordinates and six base reference coordinates, as

in Φc
z = ∂Φc/∂z.

As in case of (2.10) and (2.15), there are different ways to solve equation (2.36). Here,

a second velocity transformation from ż to żi will be used, that will result in elimination

of the term ΦcT
z λc. Again as in the previous section the relation between the dependent

and independent set of velocities is made through the null space of the Jacobian matrix

of the constraint equations (in this case Φc
z), hence:

ż = Rcżi (2.37)

where

Φc
zR

c = 0 and Φc
zż = 0 (2.38)

Differentiation of (2.37) leads to:

z̈ = Rcz̈i + Ṙcżi (2.39)

Now substituting (2.39) into (2.36) and multiplying from the left with RcT gives:

RcT HRcz̈i + RcT HṘcżi + RcT cn + RcT ΦcT
z λc = RcT

[
0
τ

]
+ RcT RoT Qex

or

H iz̈i + ci
n =

[
0
τ i

]
+ Qi

ex (2.40)

where

H i = RcT HRc ; Qi
ex = RcT RoT Qex

[
0
τ i

]
= RcT

[
0
τ

]
(2.41)

ci
n = RcT HṘcżi + RcT cn

= RcT RoT MRoṘcżi + RcT RoT MṘ
o
Rcżi − RcT RoT Qn

= RcT RoT M(RoṘc + Ṙ
o
Rc)żi − RcT RoT Qn

= RcT RoT M
d

dt
(RoRc)żi − RcT RoT Qn (2.42)
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Equation (2.40) is of particular interest because of a number of reasons. It is formulated

with respect to a truly independent set coordinates, and its solution is stable to numerical

drift. The mass matrix H i is symmetric and positive-definite as opposed to the leading

matrix of (2.10) which is only symmetric. No constraints explicitly appear in the system

of equations, but rather they are imposed implicitly through the utilization of matrices Ro

and Rc. It can be seen that by multiplication with RcT , the torques in the manipulator

joints τ can be mapped into τ i, which are the torques only in the independent relative

coordinates. Such map is very useful for the computation of the inverse dynamics problem

as pointed out by Nakamura in [72].

The computation of the nonlinear term ci
n can be done following a procedure similar to

the one presented in the previous subsection. From the equation that relates the dependent

Cartesian velocities to the independent ones

Ẏ = Roż = RoRcżi

the relationship of accelerations can be expressed as follows:

Ÿ = RoRcz̈i +
d

dt
(RoRc)żi (2.43)

Hence, the term d
dt(R

oRc)żi can be directly computed as the Cartesian accelerations

(Ÿ ) that would be produced by the independent relative velocities żi and null relative

independent accelerations (z̈i = 0). Note that for the actual (recursive) computation of
d
dt(R

oRc)żi one needs to know the dependent relative velocities and accelerations (żd, z̈d)

as well (their computation will be derived at the end of this subsection).

One obstacle imposed by the presented approach is that a set of independent variables

describing the motion of the system has to be provided at any time. Since this is of

paramount importance for the application of equation (2.40), a coordinate partitioning

method will be discussed next.

2.4.2.1 Coordinate partitioning

Finding an independent set of variables that describe the motion of a mechanical system

is not a problem with unique solution. It should be noted that in general, no set of

independent coordinates is adequate through the entire motion of the system. Hence,

finding such a set, and being able to detect when a given set is not independent any more,

are two problems of transcendental importance. One can readily use the properties of the

Jacobian matrix of the constraints Φc
z in order to solve both of them.

There are different methods that can be used to partition the state variables into

independent and dependent components [45]. In general, they can be divided into two
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groups: orthogonal and projection methods. Here, a projection method based on the

Gauss Jordan elimination with partial pivoting will be utilized [103]. It decomposes the

Jacobian matrix Φc
z as follows:

Φc
z =

[
Φd

z Φi
z

]
(2.44)

where Φd
z ∈ Rmc×mc

is a square matrix containing the columns of Φc
z in which pivots have

appeared during the partitioning procedure, mc is the number of constraint equations (it

is assumed that the constraints are independent). Φi
z ∈ Rmc×f includes the remaining

f = n + 6−mc columns (n it the number of manipulator joints, 6 is the DOF of the base

body). The variables associated with the columns of Φi
z and Φd

z are called independent

and dependent, respectively. In general, for the solution of a system of linear equations

with a leading matrix as in (2.44) it is necessary to specify values for the independent

variables, and then compute the dependent ones. Once the Gauss Jordan elimination is

performed on matrix Φc
z, f from the elements of ż can be chosen to form the independent

subset żi. In Appendix B a simple example that demonstrates the above procedure is

included.

2.4.2.2 Constraint equations and matrix Φc
z for a cut rotational joint

In this subsection, the constraint equations that occur when a rotational joint is cut will

be outlined. In order to impose a closed-loop condition for the system shown in Fig. 2.4

the following equations must be established:

ri − rk = 0 (2.45)

ui − uk = 0 (2.46)

(2.45) has three independent equations and (2.46) has two independent equations12. Writ-

ing (2.45) and (2.46) in a general form leads to:

Φr(ri, rk) = 0 (2.47)

Φu(ui, uk) = 0 (2.48)

It is necessary to compute the Jacobian matrix of the above two constraints with respect

to the coordinate vector z, hence, using the chain rule one obtains:

∂Φr

∂z
=

∂Φr

∂ri

∂ri

∂z
+

∂Φr

∂rk

∂rk

∂z
= Φr

ri

∂ri

∂z
+ Φr

rk

∂rk

∂z
∂Φu

∂z
=

∂Φu

∂ui

∂ui

∂z
+

∂Φu

∂uk

∂uk

∂z
= Φu

ui

∂ui

∂z
+ Φu

uk

∂uk

∂z

12The rotational joint has one DOF which is around the coinciding axis �i and �k.
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Figure 2.4: System containing a closed loop.

where

Φr
ri

=
∂ri

∂ri
− ∂rk

∂ri
= E

Φr
rk

=
∂ri

∂rk
− ∂rk

∂rk
= −E

Φu
ui

=
∂ui

∂ui
− ∂uk

∂ui
= E

Φu
uk

=
∂ui

∂uk
− ∂uk

∂uk
= −E

The derivative of the position vectors ri and rk with respect to a generic coordinate zj

can be computed as the velocities of these points induced by a unit velocity in żj . For

instance, if joint j is revolute and is determined by a point rj and a unit vector uj , located

between the base body and point ri, the velocity of point i originated by a unit relative

velocity in joint j can be expressed as:

∂ṙi

∂żj
= uj × (ri − rj) (2.49)

note that

∂ṙi

∂żj
=

∂

∂żj

(
∂ri

∂zj

dzj

dt

)

=
∂

∂żj

(
∂ri

∂zj

)
dzj

dt
+

∂ri

∂zj

∂

∂żj

(
dzj

dt

)

=
∂

∂żj

(
∂ri

∂zj

)
żj +

∂ri

∂zj

∂żj

∂żj
=

∂ri

∂zj
(2.50)

where

∂żj

∂żj
= 1 and

∂

∂żj

(
∂ri

∂zj

)
= 0
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The last equality follows from the fact that the term in the brackets does not explicitly

depend on żj.

The derivative of the unit vectors (ui and uk) with respect to a generic coordinate zj

can be computed in the same fashion, for example:

∂ui

∂zj
=

∂u̇i

∂żj
= uj × ui (2.51)

The Jacobian matrix Φc
z becomes:

Φc
z =

[
Φr

z

Φu
z

]
(2.52)

where

Φr
z =

∂Φr

∂z
Φu

z =
∂Φu

∂z

2.4.2.3 Forming Rc and calculation of the dependent velocities

Once Φc
z is formed, using the coordinate partitioning method based on the Gauss Jordan

elimination with partial pivoting (see Section 2.4.2.1) it is possible to reformulate (2.38)

to arrive at the following partitioned velocity equation:

[
Φd

z Φi
z

] [ żd

żi

]
= 0 (2.53)

Matrix Φd
z is non-singular because its columns contain the pivots of Φc

z, hence, it is invert-

ible. From the above equation it follows that:

żd = −(Φd
z)

−1Φi
zż

i (2.54)

[
żd

żi

]
=
[−(Φd

z)
−1Φi

z

E

]
żi (2.55)

Equations (2.55) and (2.37) are equivalent, therefore

Rc =
[−(Φd

z)
−1Φi

z

E

]
(2.56)

As demonstrated in Appendix B, when the Gauss Jordan elimination with partial piv-

oting is performed, Φd
z is constructed to be a unit matrix with proper dimensions. This

guarantees that it is full rank, and most importantly its inverse is no longer needed, hence,

the above expression for Rc can be expressed as:

Rc =
[−Φi

z

E

]
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Equation (2.56) is generally valid no matter what coordinate partitioning method is used,

hence, it will be utilized hereafter.

From practical point of view, expressing the dependent velocities żd from equation

(2.53) can be done using the least square formulation (matrix ΦdT
z Φd

z , [109] p. 153),

hence, (2.54) becomes :

żd = −(ΦdT
z Φd

z)
−1(ΦdT

z Φi
z)ż

i (2.57)

Utilization of equation (2.57) is convenient in cases when the matrix Φd
z becomes close

to singular. Such situations can occur if the utilization of a particular set of coordinates

is desirable, even if they are close to a singular configuration.

2.4.2.4 Calculation of the dependent accelerations

In order to compute the dependent relative accelerations z̈d, equation (2.53) is differenti-

ated with respect to time to obtain:

[
Φd

z Φi
z

] [ z̈d

z̈i

]
+
[
Φ̇d

z Φ̇i
z

] [ żd

żi

]
= 0

substituting z̈i = 0 in the above equation and solving for z̈d leads to:

z̈d = −(Φd
z)

−1Φ̇c
zż (2.58)

the solution of equation (2.58) can be found using the least squares method as pointed

out in the previous subsection.

· Computation of matrix Φ̇c
z.

Again let us consider the constraint equations separately as in (2.47) and (2.48). Their

Jacobian with respect to z was found to be:

Φr
z = Φr

ri

∂ri

∂z
+ Φr

rk

∂rk

∂z

Φu
z = Φu

ui

∂ui

∂z
+ Φu

uk

∂uk

∂z

The above equations can be differentiated to obtain:

Φ̇r
z = Φ̇r

ri

∂ri

∂z
+ Φr

ri

d

dt

(
∂ri

∂z

)
+ Φ̇r

rk

∂rk

∂z
+ Φr

rk

d

dt

(
∂rk

∂z

)

Φ̇u
z = Φ̇u

ui

∂ui

∂z
+ Φu

ui

d

dt

(
∂ui

∂z

)
+ Φ̇u

uk

∂uk

∂z
+ Φu

uk

d

dt

(
∂uk

∂z

)
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However, Φ̇r
ri

, Φ̇r
rk

, Φ̇u
ui

and Φ̇u
uk

are equal to zero and Φr
ri

, −Φr
rk

, Φu
ui

and −Φu
uk

are equal

to E, hence:

Φ̇r
z =

d

dt

(
∂ri

∂z

)
− d

dt

(
∂rk

∂z

)
=

d

dt

(
∂ṙi

∂ż

)
− d

dt

(
∂ṙk

∂ż

)

Φ̇u
z =

d

dt

(
∂ui

∂z

)
− d

dt

(
∂uk

∂z

)
=

d

dt

(
∂u̇i

∂ż

)
− d

dt

(
∂u̇k

∂ż

)

Therefore, differentiation of (2.49) and (2.51) leads to:

d

dt

(
∂ṙi

∂żj

)
=

d

dt
(uj) × (ri − rj) + uj × d

dt
(ri − rj)

= (ωp
j × uj) × (ri − rj) + uj × (ṙi − ṙj) (2.59)

d

dt

(
∂u̇i

∂żj

)
=

d

dt
(uj) × ui + uj × d

dt
(ui)

= (ωp
j × uj) × ui + uj × (ωi × ui) (2.60)

where ωp
j is the angular velocity of the body with output joint j.

2.4.2.5 Computation algorithm

1.) Start at time t, when the positions and independent velocities13 are known.

y =
[

zc

żi

]

where zc are position variables describing the configuration of the tree system. As noted

in Section 2.2 (see the Remark) żc �= ż.

2.) Using zc, calculate in a recursive process the new dependent Cartesian positions

Y c, solving an open-chain position problem.

3.) The constraint equations of the closed-loop system (corresponding to the cut joints)

are formed. The Jacobian matrix Φc
z is calculated using equation (2.52)14. The dependent

velocities żd are calculated from the independent ones żi using equation (2.54) or (2.57).

Matrix Rc is formed.

4.) From the velocities ż, calculate in a recursive process the new dependent Cartesian

velocities Ẏ , solving an open-chain problem.

5.) Using equation (2.58), calculate the dependent accelerations z̈d. Note that the inde-

pendent accelerations were set equal to zero z̈i = 0.
13Note that the initial independent velocities �̇i are the only velocities that can be specified by the user.

The dependent ones should be calculated using the constraint equations like in (2.54).
14This is in the case when the cut joint rotational.
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6.) Calculate the term d
dt(R

oRc)żi from (2.43) as the Cartesian accelerations Ÿ (open

chain system) evaluated with z̈i = 0. In the process z̈d, calculated in step 5 is necessary.

7.) Form the terms H i, ci, Qi
ex and solve (2.40) for z̈i.

8.) From ż form an integrable velocity vector żI , using a relation as the one in (2.2).

9.) From the obtained independent accelerations z̈i and the velocities żI form ẏ.

ẏ =
[

żI

z̈i

]

Integration of ẏ gives y and the algorithm can start again from step 1. As an alternative,

one can integrate only an independent set of żI (żi
I). The solution for the position of the

dependent coordinates, however, has to be found at each step using an iterative proce-

dure (like Newton-Raphson), which can gradually slow down the simulation. When żI is

integrated, the components of zc are directly obtained and the stabilization problem is

not critical because the round-off errors do not tend to increase with time (although they

accumulate and can slow down the integration) see [45] p. 174).

Although not discussed here, selecting a suitable integration method is very important

for the actual dynamic computation using the formulation presented in this chapter. A

choice between stability ↔ accuracy ↔ efficiency has to be made, which in general depends

on the type of the problem to be solved. A comprehensive discussion can be found in [31],

[104].

2.5 Summary

A systematic derivation of the equations of motion for a multibody systems with open and

closed-loop structure was presented. The formulation was made with respect to an inde-

pendent set of coordinates. A number of advantages and disadvantages of this approach

were outlined.

As a conclusion to the discussion, a summary of the main variables used in the dynamic

formulation will be made. In Fig. 2.5 some of the essential matrix operations are depicted.

The dimensions used are defined as follows:

n - number of manipulator joints.

k - (k = 6n + 6) is the number of the dependent Cartesian variables15

mo - open loop constraints

mc - closed loop constraints (for closing the cut joints)
15Six variables for each link and 6 for the base body.
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Figure 2.5: Dimensions of the matrices involved during the stages of the dynamic formu-
lation.

f - (f = k − mo − mc) DOF of the system

Fig. 2.5 A and B depict the first and second velocity transformations. It can be seen

how the dimensions of the mass matrix changes (M → H → H i). The corresponding

change of the state variables is depicted in C (equations (2.19) and (2.37)). Fig. 2.5 D

depicts the fact that the columns of Ro and Rc span the null space of the Jacobian matrix

of the constraint equations (equations (2.18) and (2.38)). Finally E demonstrates that

RcT is a map between the torques in all manipulator joints τ and the torques only in the

independent relative coordinates τ i. This concept can be used for an elegant computation

of the inverse dynamics of a closed-loop system as pointed out in [72].



Chapter 3

Fundamental control concepts and
strategies

This chapter reviews some of the fundamental concepts and control strategies typically

used in the field of space robotics. It is organized as follows. In Section 3.1 the concept

of reactionless manipulation is outlined. The coupling momentum, and its importance for

the solution of a variety of problems typically related to space robots are discussed. In

addition, some of the commonly used redundancy resolution techniques are overviewed.

In Section 3.2 the concept of task priority is outlined. A manipulability measure that can

facilitate a task priority based control is examined.

Using the framework established in the previous chapter, the general form of the dy-

namic equations that govern the motion of a manipulator system with a tree structure,

can be expressed in the following form (see (2.23));

[
Hb Hc

HT
c Hφ

][
ẍb

φ̈

]
+

[
cb

cφ

]
=

[
0

τ

]
+ RoT Qex (3.1)

where the components of the global inertia matrix H are derived in Appendix D. In

addition, the nonlinear term cn is divided into two parts with subscripts (·)b and (·)m,

corresponding to the base and manipulator, respectively:

H =
[

Hb Hc

HT
c Hφ

]
cn =

[
cb

cm

]

The external wrenches Qex acting on the center of mass of each component of the multi-

body system, are projected as joint torques (τ ) and base wrenches using the augmented

Jacobian matrix RoT , which forms the space of allowable motions of the system (see Sec-

tion 2.2). The matrices Hb(xb, φ) and Hφ(φ) are the global inertia of the base body and

manipulator, respectively. The off-diagonal element Hc(xb, φm) contains the coupling

inertia terms between the base and manipulator system.

37
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Figure 3.1: Coupling motion between the base and manipulator system.

The two sets of equations in (3.1), namely the one for the base and manipulator motions

are dynamically coupled. Hence, due to the motion of the robot arm, forces and torques

are transmitted to the spacecraft system, resulting in reaction motion. The investigation

of this phenomenon is one of the main concerns hereafter.

Of particular interest are the properties of the coupling inertia matrix Hc, which can

be used to uniquely determine a relation between the manipulator and base motions. In

general, Hc and Hb are functions of the joint and base variables. However, in the absence

of external forces, they depend only on φ. Hence, by solely controlling the robot arm, a

desired spacecraft’s base behavior can be ensured [86]. Of particular interest here is finding

a subspace of manipulator motions that ensures zero base reactions, hence, a subspace in

which decoupled behavior can be observed [83].

3.1 Subspace of reactionless motions

In order to obtain a better understanding, first a clear physical interpretation of the

problem at hand will be made. Consider a manipulator system mounted on a free-floating

base body as depicted in Fig. 3.1. We want to find manipulator joint velocities that result

in zero base motion. It is reasonable to assume that if such velocities exist, they will be

a member of a vector space (to be denoted by Rn) which is a subspace of Ro. In order

to find Rn and make use of it, the same approach as the one used in Chapter 2 will be

employed. It can be outlined in the following five steps;
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(S1) first the constraint equations that guarantee fulfilment of a given desired criteria are

formed;

(S2) at a second step the Jacobian of the constraint equations is found;

(S3) using the properties of the above calculated Jacobian matrix, partitioning of the

manipulator joint velocities into dependent and independent sets is made;

(S4) the null space (if it exists) of this Jacobian matrix is constructed;

(S5) once the independent velocities are specified the dependent ones are calculated.

First, the constraints for zero base reaction will be considered. As for now, it will

be assumed that the external forces/torques are zero, and initially the base is at rest.

The easiest way to form the constraints in this particular case is by making use of the

conservative quantities of the system (Fig. 3.1), namely its momentum, hence, we have;

P 0 = wm ṙm = 0 (3.2)

L0 = Lm + rm × wm ṙm = 0 (3.3)

where Lm is the angular momentum of the manipulator around its center of mass and

wm is the manipulator’s total mass (note that the derivative of rm has to be computed in

Σb). Evidently, L0 is simply Lm expressed around the base centroid and P 0 is the linear

momentum of the arm as seen from Σb. If P 0 and L0 are equal to zero the stationary

state of the base will be maintained. Comparison of equations (3.2) and (3.3) with the

expressions for the momentum of the system derived in Appendix C (C.11) leads to the

following relation:

Hcφ̇ =
[

wm ṙm

Lm + rm × wm ṙm

]

In [83], this is called the coupling momentum of the system. The above relation is of

paramount importance, and will be extensively used hereafter. Rewriting the constraint

equations using the newly introduced quantity leads to:

L = Hcφ̇ = 0 (3.4)

Note that, the above constraint is at velocity level and judging from equation (C.16),

Hc has a structure of a Jacobian matrix, however, it includes the mass and inertia char-

acteristics of the system as well. Note again, that the constraints could not be defined

explicitly as a function of the manipulator joint positions because the system of interest

has a nonholonomic structure and (in general) for the same manipulator configuration the

base position and orientation can be arbitrary.
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The vector φ̇ that satisfies (3.4) belongs to the subspace of manipulator reactionless

motions which coincides with the null space of the coupling inertia matrix. It is orthogonal

to the row space of Hc and will be denoted by Rn, hence:

HcR
n = 0 (3.5)

Differentiation of (3.4) leads to:

d

dt
L = Fm

b = Hcφ̈ + Ḣcφ̇ = 0 (3.6)

Equation (3.6) implies that in order to maintain the stationary state of the base, the

wrenches Fm
b transmitted from the motion of the manipulator to the base should be

zero1. Alternatively the condition in (3.6) could be obtained by substituting zeros for the

base velocities ẋb
2 and accelerations ẍb in the upper part of the equation of motion (3.1).

An alternative interpretation of (3.6) leads us to a very important conclusion, which

was first introduced in [83]. It will be stated in the following theorem:

Theorem 1:
� �

In the absence of active external disturbances, the motion of the manipulator does not
induce any reactions to the base if and only if the coupling momentum is conserved
(L = const).

� �
Proof: The proof follows from the direct examination of (3.6).

�

Hereafter, manipulator motion that results in conservation of L will be referred to as

reactionless manipulation. This is a key concept, that can be applied for the solution of a

number of practical problems, some of which will be discussed in the following chapters.

Note that L does not necessarily need to be equal to zero for Theorem 1 to be valid. Only

its rate of change is an important factor3. Taking this into account, a general form of

equation (3.4) can be obtained as follows:

L0 = Hcφ̇(t) (3.7)

where L0 = Hcφ̇(t0) is the initial value of the coupling momentum. It is obvious that

if L(t) = Hcφ̇(t) = L0 for all t ≥ 0 no base motion will occur (equation (3.7) could

be obtained by integration of 3.6). It should be noted that a scenario where the base is
1From the viewpoint of the base body, Fm

b are external forces, although they do not change the mo-
mentum of the system.

2�̇b appears in the nonlinear term �b.
3From practical point of view, in order for the manipulator to perform a stable motion there is always

an upper limit for the value of L. It depends on the mass and inertial characteristics of the system.
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stationary and the coupling momentum is different from zero implies that the momentum

of the entire system is non-zero.

The coupling momentum concept outlined above requires further treatment. When

external disturbances act on the system (as in most practical cases), Theorem 1 needs

to be reformulated. The situation when the system encounters momentum change is

of particular interest here, since it can occur during the contact with a target satellite.

The discussion will be extended in Chapter 4, where the coupling wrench theorem will

be introduced. At a next step, in Chapter 5, application of the coupling wrench theorem

during the post-impact phase of a satellite capturing operation is discussed.

Next, the general solution of equations (3.6) and (3.7) will be examined.

3.1.1 Solution for the joint variables

Recall that in Chapter 2, the number of truly independent coordinates describing the

motion of a given system was referred to as degrees of freedom (DOF). The DOF of a

system were defined as the difference between the dependent coordinates describing its

motion, and the number of imposed constraints. Those constraints were dependent from

the manipulator structure, and were solely used for interconnecting the elements of a

multibody system. It is convenient to make a distinction between them and the task

constraints to be used hereafter4. Henceforth, an open-loop manipulator with n joints

will be assumed to have n DOF, regardless of the imposed task constraints (mt). The

difference between the DOF and the task constraints will be called degree of redundancy

(DOR) and will be denoted by f r, hence, f r = n − mt. Note that, the above formulation

of DOR does not include the DOF of the base body, because it is assumed that the base

is not actively actuated.

Let us consider first equation (3.7). In general, the existence of solution for φ̇ that

results in reactionless motion is not guaranteed. If both the translational and attitude

motion of the base need to be controlled, the number of task constraints imposed is

mt = 6. Hence, in order for a solution to exist the manipulator should have six or more

actuated joints (n ≥ mt). In the case when n = mt and the coupling momentum L0 = 0

the only possible solution is the trivial one. The reasoning for this can be inferred from

the following well known relation from linear algebra (see [109] p. 138):

Definition 1:
� �

dim(row space) + dim(null space) = number of columns.
� �

4Although it is difficult for this distinction to be formulated in a mathematical fashion, when a system
is controlled aiming to satisfaction of given criteria, the resulting constraints will be called task constraints.
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Figure 3.2: Mapping of the joint velocities on the base motion in the case when L0 = 0.
C (·) represents the range space (column space) and N (·) is the null space of a matrix.

For the case discussed above, the row space of Hc ∈ Rmt×n is formed by the mt

constraint equations imposed. It forms a subspace in the Rn dimensional space of allowable

motions for φ̇. The dimension of the null space component coincides with the DOR of the

system. Definition 1 actually states that mt + f r = n. It is obvious that if n = mt ⇒
f r = 0, hence, the solution of (3.7) with L0 = 0 is trivial. On the other hand if n > mt

and again L0 = 0 the solutions belong to a f r dimensional subspace of Rn.

Although most of the discussion here is made regarding L0 = 05, it is worth answering

the question: what is the range of obtainable values for L as a result of the manipulator’s

motion. From linear algebra it is known that a system of equations as (3.7), can be solved

for any vector L which is in the column space (also called range space) of the leading

matrix Hc. This means that L has to be a linear combination of the columns of Hc,

hence:

L = H1
c φ̇1 + H2

c φ̇2 + ... + Hn
c φ̇n (3.8)

The space spanned by the columns of any matrix is called column space, and will be

denoted by C (·). In the robotics related literature, C (·) is commonly referred to as

manipulable space [74]. For equation (3.8), the manipulable space of Hc consists of all the

mappings for every φ̇, hence, providing information, weather given L could be realized as

a result of the motion of the manipulator. For example, if a planar (x,y axis) system, with

no external disturbances is considered, no motion of the manipulator will result in nonzero

x and y components of the coupling angular momentum L. Because of its straightforward

interpretation, the manipulable space proves to be useful in the analysis of manipulator

systems [129]. It should be noted that the dimensions of the column and row space of a

matrix are identical [109], hence, Definition 1 can be rewritten in the following convenient

form:

dimC (Hc) + dimN (Hc) = n
5Chapters 4 and 5 will deal with the case when L0 �= 0.
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with N (·) representing the null space of a matrix. Fig. 3.2 illustrates the influence of the

manipulator joint velocities on the base motion. As can be seen, joint velocities derived

from the null space of the coupling inertia matrix Hc, result in zero coupling angular

momentum L, as well as in zero change of the base velocity. On the other hand, if φ̇ is a

component of the range space of Hc, the manipulator motion results in nonzero coupling

momentum and base velocity.

In most cases, only particular base motions need to be restricted. For example, if the

manipulator is mounted on a flexible structure, from practical point of view, some of the

directions of base motion can be considered to be stiff enough, hence, leading to a smaller

number of task constraints mt [81]. The formulation of the reactionless manipulation

problem with respect only to a given set of base motions is called selective reaction-null

space [83].

The first way to find φ̇ discussed here, solves (3.7) in a way that locally guarantees

minimal norm for the joint velocities (in least squares sense). The derivation of this

solution follows:

3.1.1.1 Pseudoinverse approach

The following cost function is considered:

g(φ̇) =
1
2
(φ̇ − ξ̇)T (φ̇ − ξ̇) (3.9)

where ξ̇ is a vector of arbitrary (at least for the moment) joint velocities to be projected

on the null space of Hc. In order to minimize (φ̇− ξ̇), the method of Lagrange multipliers

will be used. The cost function is altered to include the unknown multipliers λp that will

incorporate the constraints from (3.7):

gc(φ̇, λp) =
1
2
(φ̇ − ξ̇)T (φ̇ − ξ̇) + λT

p (Hcφ̇ − L0) (3.10)

The solution has to satisfy the following necessary condition [95]:

(
∂gc

∂φ̇

)T

= 0

hence, one obtains:

φ̇ = HT
c λp + ξ̇ (3.11)

which if substituted in (3.7) leads to:

λp = (HcH
T
c )−1(L0 − Hcξ̇)
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substituting the expression for λp back in (3.11) gives:

φ̇ = H+
c L0 + (E − H+

c Hc)ξ̇ (3.12)

with H+
c = HT

c (HcH
T
c )−1 representing the right pseudoinverse of matrix Hc. In the

literature it is typically referred to as the Moore-Penrose generalized inverse. Equation

(3.12) is the general solution to (3.7) [18]. Its latter term is of particular interest, since it

is decoupled from L0. This can be demonstrated by substituting (3.12) back into (3.7) to

obtain:

L0 = HcH
+
c L0 + Hc(E − H+

c Hc)ξ̇

The above equation is valid for any choice of ξ̇, since HcH
+
c = E and

Hc(E − H+
c Hc) = 0 (3.13)

Comparing equations (3.13) and (3.5) leads to the following expression for Rn:

Rn = (E − H+
c Hc) (3.14)

From the discussion above, it becomes clear that ξ̇ projected on the null space Rn results

in joint velocities that does not violate the constraints in (3.7). Furthermore, in the

particular case when L0 = 0 the component Rnξ̇ is the only possible solution which

results in reactionless manipulation.

Using the pseudoinverse of Hc the solution to (3.6) is:

φ̈ = −H+
c Ḣcφ̇ + (E − H+

c Hc)ξ̈ (3.15)

For more information about computation and properties of pseudoinverse of a matrix

see [18], [55].

3.1.1.2 Coordinate partitioning approach

The approach using pseudoinverse outlined in the previous subsection is attractive, since it

guarantees minimum joints velocities norm (at least in local sense). Nevertheless, problems

related to kinematic singularities are not avoided. Close to such configurations the joint

velocities can become arbitrary large as noted by the authors of [13]. Many alternatives

to this solution have been proposed, including weighting methods [18], methods based on

gradient projection [129], [28], such that utilize task augmentation [85], [14], and others.

Here, following the procedure in Section 2.4.2, the Gauss Jordan elimination with

partial pivoting will be utilized in order to find solution to (3.7). As already shown,

(Section 2.4.2) the coupling inertia matrix Hc can be partitioned as follows [103], [17]:

Hc =
[
Hd

c H i
c

]
(3.16)
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where Hd
c ∈ Rmt×mt

is a full rank square matrix containing the columns of Hc in which

pivots have appeared during the partitioning procedure (forming the column space of Hc),

H i
c ∈ Rmt×fr

includes the remaining f r = n−mt columns (forming the null space of Hc).

The variables associated with the columns of H i
c and Hd

c are called independent and

dependent, respectively (for more information see the example in Appendix B). Hence,

equation (3.7) can be rewritten as follows:

Case A (L0 = 0)

[
Hd

c H i
c

] [ φ̇
d

φ̇
i

]
= 0 (3.17)

Solving equation (3.17) for the dependent joint velocities leads to:

φ̇
d

= −Hd−1

c H i
cφ̇

i
(3.18)

This method is convenient, because it makes a clear distinction between a set of dependent

and independent joint velocities. The number of elements in φ̇
i
is equal to the DOR of the

system, and plays identical role as ξ̇ in (3.12). Evidently, if φ̇
i
= 0, manipulator motion

does not occur.

Case B (L0 �= 0)

In the case when the initial value of the coupling momentum is different from zero,

equation (3.17) becomes:

[
Hd

c H i
c

] [ φ̇
d

φ̇
i

]
= Lp

0 (3.19)

where Lp
0 is the altered L0 during the partitioning of Hc

6. Solving (3.19) for φ̇
d

leads to:

φ̇
d

= Hd−1

c (Lp
0 − H i

cφ̇
i
) (3.20)

It can be noted that even if φ̇
i
= 0 the motion of the dependent part of φ̇ will guarantee

zero base deviation. The particular case when φ̇
i
= 0 will result in reactionless manipula-

tion using only mt number of joints. This corresponds to the particular solution in (3.12)

(the resultant joint velocities are different, however).

3.1.1.3 Task space augmentation approach

As opposed to the method discussed in the previous subsection, where the state vector was

partitioned by means of the Gauss Jordan elimination, the technique to be outlined here
6In order to preserve the same system of equations, all arithmetic procedures applied to the rows of �c

are performed to the RHS as well.
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is based on projection of the n dimensional vector of joint velocities into a f r dimensional

space using a time independent matrix W ∈ Rfr×n [46], [45].

ξ̇ = W φ̇ (3.21)

Before revealing the structure of W , equations (3.21) and (3.7) will be joined to form the

following system: [
Hc

W

]
φ̇ =

[L0

ξ̇

]
(3.22)

Equation (3.22) will have a unique solution if and only if the leading matrix is square

and the rows of W are linearly independent from each other and from the rows of Hc.

Let us assume that there is a matrix W that meets the above requirements. Hence,

TAug =
[
HT

c W T
]T can be inverted to obtain:

φ̇ =
[

Hc

W

]−1 [L0

ξ̇

]
(3.23)

Denoting the first mt columns of T−1
Aug with P and the remaining f r column with Rn, the

following relation can be obtained:

[
Hc

W

] [
Hc

W

]−1

=
[

Hc

W

] [
P Rn

]
=
[

HcP HcR
n

WP WRn

]
=
[

E 0
0 E

]

As can be seen, the columns of Rn span the null space of Hc. The solution of (3.22)

becomes:

φ̇ = PL0 + Rnξ̇ (3.24)

Equation (3.24) has similar structure to (3.12), where the former and latter terms represent

the particular and homogenous solutions, respectively.

Matrix W plays an important role in the above formulation. It actually represents

f r independent constraints relating the independent variables of the problem. As long

W is chosen so that TAug is full rank, the solution of (3.22) can be readily found. The

important aspect of this formulation is that once W is determined, it need not be changed

until its rows are independent from the rows of Hc. For a good example demonstrating

this see [45] p. 102 (Example 3.13).

3.1.2 Torque based reactionless manipulation

In the previous section, control strategies for performing reactionless manipulation at

velocity and acceleration level were outlined. The same concept can be formulated directly
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regarding the input joint torque. Considering zero external disturbances and solving the

upper part of (3.1) for the joint accelerations leads to:

φ̈ = −H+
c (Hbẍb + cb) + (E − H+

c Hc)ξ̈

Substituting the above equation into the lower part of (3.1) leads to:

τ = Hφ(E − H+
c Hc)ξ̈ + cφ − HφH+

c cb (3.25)

where as a desired condition the base acceleration ẍb was set to zero. In all (3.12),

(3.15), (3.24) and (3.25) appears the arbitrary vector ξ. If properly chosen it can result

in realization of additional tasks without disturbing the base stationary state. A method

for determining ξ is outlined in the next subsection.

3.2 Multiple tasks

In many cases, a manipulator system is bound to work in a multi-task environment.

Its ability to perform more than one task at a time is essential from the viewpoint of

performance efficiency and reliability. Furthermore, for achieving optimal performance,

the decomposition of a given task into sub-tasks with priority is necessary. As a simple and

very common example, the position and orientation of the robot hand can be considered.

In order to enlarge the reachable workspace of the first priority task (usually position), a

trade-off resulting in incompleteness of the secondary task has to be made. The idea of

tasks with order of priority was introduced by Nakamura [70].

Henceforth, it is assumed that the manipulator of interest is kinematically redundant

with respect to the imposed task constraints (f r = n − mt > 0). The task priority ap-

proach determines the way such redundancy has to be utilized (in order certain conditions

to be satisfied), based only on present information. Its application is computationally

inexpensive, and suitable for real-time implementation. Nevertheless, problems related to

conflicts between the different tasks impose quite a challenge, since their occurrence is not

related to the kinematic or dynamic parameters of the system. Such task conflicts are usu-

ally referred to as algorithmic singularities, since they represent solely the incompatibility

of the simultaneously used control algorithms [80].

Here, the idea will be demonstrated with an example. In the case when a manipulator

system needs to perform an approaching maneuver to a target satellite, it is usually nec-

essary to control the base motion in a desired way. Hence, two types of constraints need

to be imposed;

(C1) base motion constraint;
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(C2) end-effector motion constraint.

From practical point of view, the satisfaction of six base and six end-effector conditions is

not feasible. For that reason, the formulation will be made only with respect to the base

attitude (no change is desired) and end-effector linear motion profile. The former one is

assumed to be with first priority. In order to account only for the base rotation, equation

(3.7) will take the following form:

Lc = H̃cφ̇ (3.26)

where Lc is called the coupling angular momentum [82]. For more details on the transition

between (3.7) and (3.26) see Appendix C, equation (C.18).

The C2 task is defined using:

vh = Jv
φhφ̇ + vb (3.27)

with vh and vb being the linear velocities of the end-effector and base, respectively. Jv
φh

represents the linear part of the Jacobian matrix of the end-effector (Jφh).

Solving (3.26) for φ̇ (using redundancy resolution based on the pseudoinverse of H̃c),

gives:

φ̇ = H̃
+
c Lc + (E − H̃

+
c H̃c)ξ̇ (3.28)

substituting φ̇ from (3.28) into (3.27) leads to:

vh = Jv
φhH̃

+
c Lc + Jv

φh(E − H̃
+
c H̃c)ξ̇ + vb

solving the above equation for ξ̇, one obtains:

ξ̇ = J̄
+(vh − vb − Jv

φhH̃
+
c Lc) + (E − J̄

+
J̄)ξ̇2

where J̄ = Jv
φh(E− H̃

+
c H̃c) is a restricted Jacobian matrix typically appearing in redun-

dancy resolution schemes [80]. Finally substituting ξ̇ back into (3.28), gives:

φ̇ = H̃
+
c Lc + J̄

+Ψ + (E − H̃
+
c H̃c)(E − J̄

+
J̄)ξ̇2 (3.29)

where ξ̇2 is an arbitrary vector with proper dimensions, Ψ = vh − vb − Jv
φhH̃

+
c Lc and

(E − H̃
+
c H̃c)J̄

+ = J̄
+. The last relation follows directly from the idempotency7 and

symmetry of (E − H̃
+
c H̃c), and the properties of the pseudoinverse.

The term H̃
+
c Lc is the particular solution for the task with first priority. The second

term represents the projection of the secondary task on the null space of H̃c. Hence, joint
7A square matrix � is idempotent if � = �2.
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velocities that perform end-effector control are derived only from the orthogonal space of

the row space of H̃c, therefore, they will not influence the base control subtask whatsoever.

The last term accounts for the remaining degrees of redundancy.

If Lc = 0 and ξ̇2 = 08 are assumed, (3.29) becomes:

φ̇ = J̄
+(vh − vb) (3.30)

As can be seen, the restricted Jacobian matrix J̄ is the key to the method described

above. In the particular example considered, it contains information about the end-effector

kinematics (via Jv
φh) and the manipulator ↔ base dynamic coupling (via H̃c). If J̄ is

well conditioned, the solution of (3.30) will provide joint velocities that satisfy the end-

effector velocity constraints, while providing zero base attitude deviation. In many cases,

however, the generation of a singularity-free solutions is not possible as a result of task

contradiction, in other words even though each task could be performed separately, their

simultaneous application is not possible. In terms of the three matrices H̃c, Jv
φh and J̄

this means that:

{rank(J̄) < rank(J̄)max | rank(H̃c) = rank(H̃c)max, rank(Jv
φh) = rank(Jv

φh)max}

The above expression is an interpretation of algorithmic singularity.

3.2.1 Task performance measure

Avoiding situations when the restricted Jacobian J̄ is singular is of particular interest from

the viewpoint of planning and control. Apart as a result of algorithmic singularities, rank

deficiency of J̄ can occur at manipulator configurations where rank(Jv
φh) < rank(Jv

φh)max

as well. The first step in avoiding singularities is to locate them in joint space. This can

be successfully performed using a measure similar to the one proposed by Yoshikawa [129]

(SJ =
√

det
[
Jv

φhJvT
φh

]
). As introduced in [80] such measure can have the following form:

SJ̄ =
√

det
[
J̄ J̄

T
]

(3.31)

When the scalar SJ becomes equal to zero and Jv
φh is full rank (SJ �= 0), the performance

of the secondary task in combination with the first one becomes impossible.

Using the fact that (E − H̃
+
c H̃c)(E − H̃

+
c H̃c)T = (E − H̃

+
c H̃c), equation (3.31) can

be rewritten in a more convenient form:

SJ̄ =
√

det
[
Jv

φh(E − H̃
+
c H̃c)JvT

φh

]
(3.32)

8No additional redundancy is available or the introduction of additional constraints (third task) is not
desirable.
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In general, SJ̄ < SJ , since SJ̄ represents the restricted manipulability measure that defines

the ability of the manipulator to perform the end-effector task, when joint velocities only

from the null space of H̃c are used. Although likely, it is not necessary that SJ̄ becomes

smaller when the dimension of (E − H̃
+
c H̃c) decreases. However, from (3.32) it can be

directly observed that in the case when (E − H̃
+
c H̃c) does not exist SJ̄ will be equal to

zero.

An alternative, and very helpful interpretation of (3.32) can be made. It can be

represented as a product of the elements of J̄ obtained by its singular value decomposition

J̄ = ŪΣ̄V̄
T , where Ū ∈ Rmt

2×mt
2 and V̄ ∈ Rn×n with mt

2 being the number of secondary

constraints9. Σ̄ = diag(σ1, σ2, ..., σmt
2
) ∈ Rmt

2×n contains the singular values of J̄ (σ1 ≥
σ2 ≥ ... ≥ σmt

2
≥ 0) , hence:

SJ̄ =
√

det
[
ŪΣ̄V̄

T
V̄ Σ̄T

Ū
T
]

(3.33)

Taking into account that Ū and V̄ are orthogonal matrices, the above equation becomes:

SJ̄ =
√

det
[
Σ̄Σ̄T

]
=

mt
2∏

i=1

σi (i = 1, 2, ..., mt
2) (3.34)

When matrix J̄ looses rank, at least one of its singular values σi becomes zero, hence,

leading to SJ̄ = 0.

From the discussion above it can be concluded that the inverse of the restricted ma-

nipulability measure SJ̄ has similar properties as the condition number10 of J̄ .

The manipulability measure outlined above, relies on the Euclidean metric on R3 (only

the end-effector linear velocity was considered), which is not invariant under change of

coordinate frames. As noted in [68] p. 429, care should be exercised when one applies this

measure to manipulator design and control (see Example A.26). Additional references

related to this problem can be found in [132], [102], [33].

9In the example considered here, these are the end-effector motions to be controlled.
10The condition number of a matrix is defined as the ratio between the biggest and smallest singular

value (σ1/σmt
2
).



Chapter 4

Approaching phase of a satellite
capturing operation

In recent years, the capture of a tumbling satellite has been recognized as a priority task.

Its solution is expected to be applied to a variety of space missions, involving servicing,

inspection, and repairing operations [126], [54], [84], [39], [16], [93]. Furthermore, the

removal of space debris from orbit is a mission that should be considered seriously. In order

the realization of each task to be possible, a capturing operation should be performed.

There has been a great deal of fundamental research in the area of space robotics (see

Chapter 1) and though capturing a tumbling object in space is a well known problem, it is

difficult to distinguish one of the solutions proposed up to now, which can solve it readily.

Discussing the whole process from the trajectory planning to the post-impact control is an

arduous task. The nature of the problems occurring in the different phases of the capture

can be completely different, so most of the researchers tend to separate the operation into

closing in maneuver, approach1, impact and post-impact motion (Fig. 4.1).

In this chapter, the approaching motion of a space manipulator to a target satellite is

discussed. It is assumed that the closing in maneuver of the chaser spacecraft has already

finished and the target object is within the reachable space of the robotic arm. Solutions

to typical problems that can occur during this phase are studied. The application of

a strategy based on momentum redistribution is introduced. It will be shown that its

utilization is beneficial from the viewpoint of trajectory planning when constraints on the

base attitude motion are imposed. Furthermore, in Chapter 5 the effects of the above

mentioned strategy over the post-impact motion of the system are discussed.

The outline of this chapter is as follows: Problem definition and assumptions are

presented in Section 4.1. The treatment of the fundamental concept of reactionless ma-

nipulation outlined in the previous chapter will be extended here.

1Here, with approach, the approaching motion of a manipulator arm to a target object is implied.

51



52 Chapter 4 Approaching phase of a satellite capturing operation

Figure 4.1: Four phases of a capturing operation. During the closing in phase, the chaser
spacecraft performs an orbital maneuver to the target satellite (this maneuver can be
referred to as approach, nevertheless, we want to make a clear distinction between global
motion of the spacecraft, and local motion of the manipulator, hence, the term approach
will be used only regarding the manipulator’s motion). During the approach (case B), the
robot arm follows a predefined trajectory profile and reaches a grasping point positioned
on the target satellite. During the impact phase, a griper system establishes a firm grip
on the grasping facility. The final phase covers the post-impact motion of the system.
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Theorem 1 (see Section 3.1) will be reformulated for the case when external distur-

bances act on the system. This new formulation (referred to as the coupling wrench

theorem), proves to be useful for all phases of the capturing operation. Preliminaries and

basic equations to be used are summarized in Section 4.3, where a reduced form of the

equation of motion is derived.

In Section 4.4, a discussion regarding the manipulator approaching motion to a non-

tumbling satellite is made. Considering such stationary case, gives additional insight on

the satellite capturing problem, as will become apparent in the sequel. In Section 4.4.2 the

holonomic distribution control is introduced, and the problem of planning a reactionless

end-effector path to a desired point in Cartesian space is studied.

In Section 4.5 a discussion regarding the manipulator approaching motion to a tum-

bling satellite is made. The bias momentum approach (BMA) is introduced in Section

4.5.1. Different pre-impact momentum distributions are compared, and angular momen-

tum redistribution strategy is developed. The trajectory planning problem when BMA is

utilized, is address in Section 4.5.2. A two step planning procedure and different ways for

its implementation are discussed. Mission scenario, and results from numerical simulations

that verify the usefulness of the proposed strategies are in Section 4.5.4.

4.1 Problem definition and assumptions

As mentioned at the beginning of this chapter, the problems occurring in the four phases of

a capturing operation are different. Solutions that look useful when applied for overcoming

a specific difficulty during the approach however, might turn out to be a burden for the

stages to come. That is why the usefulness of the strategies to be proposed hereafter is

assessed from the viewpoint of the entire capturing operation. The aim of the study in

this chapter is threefold;

(1) to provide further insight into the problems occurring while capturing a tumbling

satellite;

(2) to utilize the holonomic distribution control for planning reactionless end-effector

paths to a desired position in Cartesian space;

(3) to propose a strategy using bias angular momentum that can facilitate the trajectory

planning and post-impact motion control.

More specifically, the main focus is on finding such motion profile for the manipulator arm

(during the approach) that minimizes the reactions transferred to the chaser’s satellite

base, before and after the contact with the target. The assumptions made can be outlined

as follows.
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Assumptions:

In this study, a robotic manipulator mounted on a chaser satellite is assumed to capture

a target object. We assume that;

a1) the target undergoes constant linear and angular motion and its angular momentum

is known in advance (precise estimation is not necessary) [59], [61], [35], [47];

a2) there are no external forces acting on the entire system (chaser plus target). No gas-

jet thrusters are used on the chaser’s base2. For attitude stabilization only reaction

wheels are utilized;

a3) there is no relative linear motion between the mass centroids of the chaser and target;

a4) the inertial frame Σi is fixed in the center of mass of the entire system;

a5) the manipulator is redundant with respect to the base angular motion task;

a6) the capturing operation is successfully completed when the angular momentum from

the target is transferred in the reaction wheels on the chaser satellite.

4.2 The coupling wrench theorem

In Section 3.1 an overview of the already introduced [81] concept of coupling momentum,

and its utilization for reactionless manipulation was made. The discussion however, was

restricted only to the case when the momentum of the system is constant, hence, the

external disturbances acting on the system are zero. Such assumption, although valid

in many cases, cannot be made when a contact with a tumbling target satellite is to be

performed. In this section a generalization of Theorem 1 (see Section 3.1) will be proposed.

Coupling wrench theorem:
� �

The stationary state of the base will be maintained if and only if the coupling wrench
Fc(t) = d

dtL(t) is equal to the sum of all external wrenches projected along the coordi-
nates of the base at time t, for all t.

� �
If FΣ

b (t) is the sum of all external wrenches projected along the coordinates of the base

at time t, the coupling wrench theorem (CWT) states that Fc(t) = FΣ
b (t), for all t. It can

be seen that CWT does not contradict with Theorem 1, since when no external forces act

on the system d
dtL(t) = 0 ⇒ L = const.

Proof:
2An exception is made in Section 5.3.1 where for the sake of comparison a case when gas/jet thrusters

are used, is included.
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The validity of the above theorem follows directly from the upper part of equation

(3.1), when the base velocities ẋb and accelerations ẍb are set equal to zero. Let us

rewrite the right hand side of (3.1) in the following way:

[
bJ b

bJm

J b Jm

]T [
Qb

ex

Qm
ex

]
(4.1)

where the expression for Ro follows from equation (2.30), and the column vector of external

wrenches Qex, is divided into wrenches acting on the base (Qb
ex) and on the links of the

manipulator arm (Qm
ex). Next, combining the upper part of equations (4.1) and (3.1) leads

to:

Hbẍb + Hcφ̈ + Ḣbẋb + Ḣcφ̇ = Qb
ex + JT

b Qm
ex (4.2)

where the nonlinear term cb = Ḣbẋb + Ḣcφ̇, and bJ b is a unit matrix was used. Setting

the base velocities ẋb and accelerations ẍb equal to zero, and adopting FΣ
b = Qb

ex+JT
b Qm

ex

leads to:

d

dt
L = FΣ

b (4.3)

where equation (3.6) was used.

�

Corollary:

The coupling wrench theorem establishes a clear condition which if satisfied, the sta-

tionary state of the base will be maintained in the presence of external forces/torques. In

theory, evaluation of the magnitude and direction of the external disturbances is possi-

ble, however, in practice such measurements can contain high level of noise, hence, direct

implementation of equation (4.3) might be difficult.

Proposition 1: If the change of the coupling momentum (L) is equal to the momentum

change of the system, then the base stationary state will be maintained.

Proof: The proof follows directly from equation (4.3).

�

Through the rest of this chapter, as well as in Chapter 5, Proposition 1 will be used

extensively. It appears to be useful both for the approach and post-impact motion control

of the system, as it will become apparent in the sequel.

4.3 Reduced form of the equations of motion

The dynamical equations governing the motion of a free-flying space robot as a multibody

system are in general expressed as in equation (3.1). The formulation is not limited
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Figure 4.2: Model of a n DOF space robot capturing a target.

to a single manipulator arm, and for the derivations in this chapter we assume a serial

manipulator with p degrees of freedom (DOF), in combination with a system of three

reaction wheels (RW), mounted on a base body as shown in Fig. 4.2 (n = p + 3). Points

of interest are Σi and Σb, which represent the origin of the inertial frame and the frame

fixed in the base centroid, respectively.

During the impact and post-impact phases of a capturing operation, momentum is

“exchanged” between the chaser and a tumbling target satellite. Especially, the angular

component of this momentum can be quite harmful. For a satellite-based chaser system, it

can lead to attitude destabilization. When the robot is mounted on a flexible supporting

structure, high amplitude vibrations will be induced. On the other hand, linear momentum

(if it exists) can be compensated by external forces only, therefore it will not be discussed

here. Taking into consideration that at the beginning of the approaching phase there is

no relative linear velocity between the centroids of the chaser and target satellites (as

assumed in Section 4.1), (3.1) can be reformulated with respect to the base attitude only.

Eliminating the linear base acceleration from the upper part of (3.1), results in a system

of equations where v̇b
3 is implicitly accounted for.⎡

⎢⎢⎣
H̃b H̃bm H̃br

H̃
T
bm H̃m 0

H̃
T
br 0 H̃r

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ω̇b

φ̈m

φ̈r

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

c̃b

c̃m

c̃r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

τm

τ r

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

J̃
T
bh

J̃
T
mh

J̃
T
rh

⎤
⎥⎥⎦Fh (4.4)

where sub-indices m and r denote variables of the manipulator and reaction wheels, re-

spectively. For simplicity, only external wrenches acting at the tip of the end-effector
3Hereafter, for convenience, variables that describe the base body will be denoted by subscript b (for

the derivations in Chapter 2, subscript 0 was used).
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(Fh) are considered. J̃ bh, J̃mh and J̃rh are Jacobian matrices which, together with the

remaining sub-matrices of (4.4) are defined in Appendix E. Note that the coupling inertia

matrix H̃c is divided into two parts:

H̃c =
[
H̃bm H̃br

] ∈ R3×n

where H̃bm ∈ R3×p and H̃br ∈ R3×3 are the coupling inertia matrices between the base

and manipulator, and base and reaction wheels, respectively.

Integrating the upper part of (4.4) yields the angular momentum conservation law:

L = H̃bωb + H̃bmφ̇m + H̃brφ̇r + Lp (4.5)

where Lp = r̂bgP + rb × P = rg × P , with P representing the linear momentum of

the spacecraft, and rb is the distance from the inertial coordinate frame (Σi) to the base

centroid (Fig. 4.2). In equation (4.5) L is the angular momentum around the origin of Σi

(see Appendix C). From assumptions (a2) and (a4) it follows that before the contact, the

linear momentum of the two systems with respect to Σi will be zero. Each of the three

remaining components on the right hand side of (4.5) defines a partial angular momentum

of the system. The first term represents the angular momentum of the base body as a

result of its attitude change, the second one is related to the manipulator motion and is

called the coupling angular momentum [83] (between the base and the manipulator). The

third term is the angular momentum in the reaction wheels.

Lb = H̃bωb Lbm = H̃bmφ̇m Lr = H̃brφ̇r

In Section 3.1, L = Hcφ̇ was called the coupling momentum. It includes both linear

and angular parts (LP and LL). It should be noted that LL �= Lbm because LL is expressed

around the base centroid, while Lbm is expressed around the mass center of the chaser

system (see Appendix C and the definition of the symbols appearing in equation (C.18)).

In the sequel, mostly the coupling angular momentum Lbm will be used. Sometimes when

it is clear from the context, for simplicity Lbm will be referred to as coupling momentum.

By applying internal torques in the manipulator joints and reaction wheels, the three

partial angular momenta can change in a desired way. This change is called momentum

redistribution. In other words, though the amount of L present in the chaser system is

constant, its distribution over the base, manipulator and reaction wheels can vary. In

Section 4.5.1, it will be shown that the momentum distribution before the contact with

the target is closely related to the base attitude deviation after the contact. With a

proper choice of the three partial angular momenta, one can facilitate the post-impact

attitude control. Furthermore, the process of angular momentum redistribution results

in manipulator motion, which will be utilized in order to generate a feasible end-effector

approaching trajectory in Section 4.5.2.
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4.4 Approaching maneuver to a stationary target satellite

In this chapter, the approaching motion of a space manipulator to a stationary target

satellite is discussed. With stationary it is implied that the target does not undergo

rotational motion. From assumption a3 made in Section 4.1 it follows that, from the

viewpoint of the chaser satellite, the grasping point appears to be stationary. Furthermore,

it is assumed that the closing in maneuver has already finished, and the target object is

within the reachable space of the robotic arm.

In the case of a stationary target, the capturing problem reduces to planning an ap-

proaching path for the end-effector to a given grasping point (on the target satellite) fixed

in inertial coordinates. Since the end-effector motion profile can be designed in such a

way, that the magnitude of the contact forces during the impact phase are very close to

zero [128], the post-impact motion of the system can be assumed negligible. Hence, in this

section only the motion of the chaser systems during the approaching phase will be con-

sidered. Furthermore, it is assumed that the spacecraft’s base is in a free-floating mode,

hence, no attitude control is performed.

As already mentioned in Chapter 1, in 1997 the NASDA’s ETS VII satellite was

successful to demonstrate the rendezvous and docking with a cooperative target [127].

One of the problems encountered was keeping the spacecraft’s base attitude profile within

predefined limits during the manipulator motion. In order to be able to satisfy this

requirement, the motion profile for the robot arm should be designed using the concept

of reactionless manipulation, introduced in [81]. In this section the main focus will be on

determining end-effector Cartesian paths that result in minimal spacecraft’s base attitude

change.

In Chapter 1 some of the main techniques for path planning applied to space robots

have been outlined. This chapter introduces a new such technique (referred to as holo-

nomic distribution control) that permits planning of reactionless paths to a desired point

in Cartesian space. It has certain similarities with a strategy previously employed for

solving the inverse kinematics problem for a redundant manipulator arm, by partitioning

the Jacobian matrix into full rank minors [36]. The resemblance is in light of the fact

that, a decomposition in joint space which leads to certain advantages from the viewpoint

of planning and control is made. The main differences are; (i) we consider the system’s

dynamical characteristics as well; (ii) the joint space is decomposed into sets with redun-

dancy one with respect to the base angular motion; (iii) the application considered is

reactionless path planning, hence the nature of the problems that need to be dealt with

is different. Some of them are related to the fact that a free-floating manipulator is a

system under nonholonomic constraints; (iv) for the implementation of our approach a
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mesh adaptive direct search algorithm is utilized.

Next, a brief discussion on the types of constraints that need to be dealt with, and a

short overview of some basic concepts from differential geometry that are needed for the

formulation of the holonomic distribution control, are made.

4.4.1 Pfaffian constraints

In this subsection, a brief treatment of two types of Pfaffian constraints (integrable and

nonintegrable) is made. Both appear typically when free-floating systems are studied. It

is assumed that the system of interest is drift free, in other words the angular momentum

is equal to zero (under the present assumptions this condition is satisfied during the

approaching motion).

In Section 2.2, for the formulation of the dynamical equations of a free-floating ma-

nipulator system, a set of holonomic (scleronomous) constraints were used. They were

defined using a set of algebraic functions in the following form:

hi(q) = 0 , i = 1, ..., mt (4.6)

where q ∈ Rn is a vector that uniquely represents the configuration of the system of

interest. After the constraints in (4.6) are imposed, the motion of the system evolves on

a f r = n − mt dimensional manifold (for a definition of manifold see [58] p. 132, [68]

p. 403). As it was noted in Section 2.2, the solution to the equations of motion with

constraints can be facilitated if the constrains are represented at velocity or acceleration

level (see equations (2.3), (2.4)). Such transition is straightforward and most importantly,

reversible ( [68] p. 318 ). Let us write this in the following fashion:

hi(q) = 0 ⇒ ∂hi

∂q
q̇ = νi(q)q̇ = 0 ⇒ hi(q) = 0 (4.7)

The set of equations:

νi(q)q̇ = 0 (4.8)

are called Pfaffian constraints. A set of Pfaffian constraints is said to be integrable, if

it is equivalent to a set of algebraic constraints. With equivalent, it is implied that the

Pfaffian constraints span the same smooth hypersurface in configuration space as the set

of algebraic constraints. It is customary to refer to integrable Pfaffian constraints as

holonomic, although they are expressed at velocity level, while holonomic constraints are

defined by a set of algebraic functions.

In many cases, the formulation of the constraint equations can be done directly (only)

at velocity level, hence, forming a set of Pfaffian constraint. This was done in Section
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Figure 4.3: Unicycle constraints.

3.1, where the structure of the coupling momentum L [83] was derived. When νi(q)i is

not defined as the differential of an algebraic function, determining weather the resulting

constraint is holonomic is not straightforward [68], [57], [102]. A single constraint of

the form in equation (4.8) is said to be nonholonomic if it is nonintegrable, hence, it is

not equivalent to an algebraic function (defining a holonomic constraint). Perhaps, the

simplest example demonstrating a system under nonholonomic constraint is the unicycle.

Unicycle example:

The unicycle in Fig. 4.3 is characterized by the (x, y) position of its center point
(denoted by a dot), and by the angle θ between the x axis and the axis of the unicycle.
Let us assume that the unicycle cannot move sideways. In Fig. 4.3 a red line depicts
the direction of impossible instantaneous motion. The corresponding constraint can be
defined as follows:

[sin(θ) , − cos(θ) , 0]

⎡
⎣ ẋ

ẏ

θ̇

⎤
⎦ = 0 (4.9)

Since the unicycle can have an arbitrary configuration with the same velocity q̇, the
above constraint cannot be integrated analytically to yield the (x, y) position and angle
θ. Equation (4.9) is a typical example of a nonintegrable Pfaffian constraint. It should
be noted that a nonholonomic constraint does not limit the configuration space of the
system, but only imposes a local velocity restriction. Evidently, the unicycle can reach
any point in the plane with arbitrary orientation θ.

�

Discussing integrability in the presence of multiple Pfaffian constraints becomes much

more involved. The reason comes from the fact that, even if each of the mt constraints in

(4.8) is nonintegrable, the combination of two or more of them might lead to an integrable

(holonomic) set of constraints. This fact will be fully utilized in the holonomic distribution

control that will be introduced in the next section.
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In many cases, it is convenient to convert a given problem with nonholonomic con-

straints in another form. By examining the system not from the viewpoint of the direc-

tions of impossible instantaneous motion, but rather from the viewpoint of the directions

in which we are free to move, in other words the space of allowable motions. In Section

2.2 a detailed analysis on the usage of the space of allowable motions for the definition of

the system dynamics was made. In addition, in Section 3.1 we used the term subspace of

reactionless motions, which represented manipulator motions that result in zero reaction

forces transmitted to the base spacecraft. Following the derivation made in Section 2.2,

we choose a basis for the right null space (to be denoted by gj(q)) of the constraints in

(4.8), which satisfies the following relation:

νi(q)gj(q) = 0 , i = 1, ..., mt , j = 1, ..., n− mt (4.10)

Hence, the subspace of allowable motions can be written as:

q̇ = g1(q)u1 + g2(q)u2 + ... + gfr(q)ufr (4.11)

where f r = n − mt can be interpreted as the degree of redundancy of a system with n

DOF, and mt applied task constraints. The column vector u ∈ Rfr
(containing all the

u’s) represents the control input of the system in (4.11).

The application of the above approach to the unicycle example is straightforward.

Unicycle example (continued a):

The space of allowable motions for the unicycle characterized by equation (4.9) can
be expressed as follows:

g1(q) =

⎡
⎣ 0

0
1

⎤
⎦ g2(q) =

⎡
⎣ cos(θ)

sin(θ)
0

⎤
⎦ (4.12)

It should be noted that although the unicycle can reach every configuration (x, y, θ),
the dimension of the space of allowable motions is two, because at a given instant only
two system motions are allowed: (i) change of the angle θ, and (ii) translation along the
unicycle axis.

�

At the end of this subsection, it is convenient to adopt some notation from differential

geometry, which will be used in Section 4.4.2. The following definitions are adopted

from [68].

Definition 1: A vector field on Rn is a smooth map which assigns to each point q ∈ Rn

a tangent vector q̇ ∈ TqR
n. Where TqR

n stands for the tangent space to point q.

Definition 2: A distribution4 is a smooth map assigning a linear subspace of TqR
n to

each configuration q ∈ Rn.
4The term “distribution” defined here is different from the term “distribution” used through the thesis,

where the latter one is used to express mainly an angular momentum distribution.
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Example for a distribution is the linear span of the vector fields g1(q) and g2(q) in the

unicycle example above. In general we will denote a distribution as:

∆ = span{g1(q), ..., gfr(q)} (4.13)

Evaluated at any point q ∈ Rn the distribution defines a linear subspace of the tangent

space TqR
n:

∆q = span{g1(q), ..., gfr(q)} ⊂ TqR
n (4.14)

Definition 3: A distribution ∆ is said to be regular if the dimension of ∆q does not

vary with q.

Definition 4: A distribution is involutive if it is closed under the Lie bracket.

The Lie bracket between two vector fields a and b on Rn is a new vector field, denoted

by [a, b], defined by:

[a, b](q) =
∂b

∂q
a(q) − ∂a

∂q
b(q) (4.15)

Lie bracket satisfies (i) Skew-symmetry, (ii) Jacobi identity, (iii) Chain rule [68] p. 325.

Hence, it can be concluded that Lie bracket on R3 coincides with the vector cross product.

Unicycle example (continued b):

For the unicycle in Fig. 4.3, the distribution ∆ is obviously regular, since at each
configuration q, ∆q = 2 (note that in equation (4.12), g1(q) and g2(q) are decoupled).

The distribution, is not involutive, since if it were, according to Frobenius’ theorem
(A regular distribution is integrable if and only if it is involutive) it should be concluded
that the constraints are integrable (which is not the case). Even though for that simple
example it was possible to determine the nonintegrability only by inspection, it is worth
confirming it using Definition 4 as well.

Computing the Lie bracket of g1(q) and g2(q) (see equation (4.12)), using (4.15)
leads to:

∂g1(q)
∂q

g2(q) =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣ cos(θ)

sin(θ)
0

⎤
⎦ ;

∂g2(q)
∂q

g1(q) =

⎡
⎣ 0 0 − sin(θ)

0 0 cos(θ)
0 0 0

⎤
⎦
⎡
⎣ 0

0
1

⎤
⎦

g3 = [g1, g2] =

⎡
⎣− sin(θ)

cos(θ)
0

⎤
⎦

The vector field g3 is linearly independent of g1 and g2, and violates the constraint
(4.9). Hence, it can be concluded that the distribution ∆ is not involutive. This confirms
that (4.9) is a nonholonomic constraint. Similar approach can be used in order to discuss
holonomy and nonholonomy of free-floating space systems [73].

�
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4.4.2 Holonomic Distribution Control

Reactionless motion of a manipulator system in combination with achieving a desired

motion profile of the end-effector can be performed by using the task priority approach

outlined in Section 3.2. In order for both tasks to be successfully carried out without

occurrence of algorithmic singularities, the parameter ξ̇ in equation (3.28) has to be defined

properly. Specifying ξ̇ in a way that satisfies given path constraints is not a trivial problem,

however. Using optimization techniques for the direct determination of ξ̇ is very much

dependent on the initial-guess specified, and yields satisfactory results only in limited

number of cases. In this study we propose the holonomic distribution control (HDC) in

order to simplify the path planning problem. Its main concept is outlined hereafter.

The HDC is defined to be a control in the form of equation (4.11), that utilizes a one

dimensional distribution ∆1 ⊂ ∆. The dimension of the distribution ∆ coincides with the

degree of redundancy of the system, which is f r = n − mb, where n is determined by

the manipulator joint variables (the system of interest is assumed to be in a free-floating

mode), and mb represents the base task constraints. The reasoning for using only one

dimensional distribution is based on the fact that, in any configuration q, the solutions

which lead to reactionless manipulation evolve from a one dimensional manifold. By using

Lie bracket on the columns of the reaction null space of the coupling inertia matrix H̃bm

(which span the distribution ∆), an involutivity of ∆1 can be established [83]. In addition,

if the coupling inertia matrix does not loose rank, the distribution ∆ (and hence ∆1 ⊂ ∆)

can be shown to be regular. Once involutivity of a regular distribution ∆1 is established,

its integrability follows directly from the Frobenius’ theorem.

By choosing different combinations of vector fields (members of ∆) in order to form

distinct one dimensional distributions ∆1, the motion of the system can be steered in dif-

ferent directions. Furthermore, the constraints corresponding to ∆1 are holonomic, hence,

each of the instantaneously available motion directions, lie on a smooth one dimensional

manifold in joint space. Such approach can facilitate the planning problem as will be

shown in the sequel.

Remark:
Above, an assumption that the coupling inertia matrix does not loose rank was

made. This assumption can be shown to be always valid, if the system of interest has
strong inertial coupling [108], [65].

One way of defining distinct one dimensional distributions, is to partition the manipu-

lator joint variables into a number of sets, referred to as primitives. Each primitive consists

of mb+1 joint variables (mb is the number of base rotational motions to be controlled). For

example, if a three DOF planar manipulator mounted on a free-floating base is considered,

its primitives can be defined as depicted in Fig. 4.4. Since mb = 1, each primitive consists
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Figure 4.4: Cartesian paths when using different primitives for a three DOF planar ma-
nipulator mounted on a free-floating base.

of only two joints. For example, primitive 1 is formed by joints 1 and 2. Let us assume

that for a time period t + ∆t just one primitive is actuated and the remaining joints are

servo locked. Hence, at a given time t each primitive defines a direction for the reaction-

less end-effector motion in Cartesian space5 (Fig. 4.4). It is clear that these directions are

just a subspace of the possible end-effector reactionless motions from a given manipulator

configuration. Nevertheless, the decomposition utilized here facilitates the path planning

problem, because manipulator motion derived from one dimensional null space of the cou-

pling inertia matrix H̃bm, results in a curve in Cartesian and joint space (not a surface).

Hence, at each manipulator configuration the end-effector motion resulting from a given

primitive is unique6. Using HDC regarding systems in three dimensional space is possible.

In the case of a 3D five DOF manipulator for example, when mb = 3 five primitives exist

(each of them consists of four joint variables). In the case of a six DOF manipulator the

primitives are fifteen.

Once a primitive is chosen the joint space is separated into actuated (φa) and stationary

(φs) joints.

[
H̃

s
bm H̃

a
bm

] [ φ̇
s

φ̇
a

]
= 0 (4.16)

Hence, the motion rate of φa can be calculated as follows:

φ̇
a

= −H̃
a+
bmH̃

s
bmφ̇

s
+ (E − H̃

a+
bmH̃

a
bm)ξ̇

a
(4.17)

5For the example discussed above there will be six such directions.
6In the case when the manipulator motion is derived using a distribution with two or higher dimensions,

the reactionless paths lie on a two or higher dimensional surface. Choosing a direction on this surface is
not a trivial problem, and that is precisely what we want to avoid.
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If φ̇
s

= 0 is assumed, the above equation becomes:

φ̇
a

= (E − H̃
a+
bmH̃

a
bm)ξ̇

a
(4.18)

where (E − H̃
a+
bmH̃

a
bm) represents the null space of the coupling inertia matrix (H̃

a
bm)

corresponding to the actuated joints, and ξ̇
a ∈ R(mb+1) is an arbitrary column vector.

It should be noted that, end-effector paths resulting from joint velocities calculated from

(4.18) does not depend on the magnitude of ξ̇
a

(assuming that it is not equal to zero).

The reasoning for this comes from the fact that the null space of H̃
a
bm is one dimensional.

Hence, ξ̇
a

can influence only the end-effector velocity on a given path. Since trajectory

planning is not the issue here, ξ̇
a

will be considered to be with constant magnitude.

Nevertheless, its sign can determine the direction of motion and needs to be accounted

for.

Using the fact that the Cartesian paths are independent from the magnitude of ξ̇
a
,

the path planning problem reduces to finding a sequence of primitives, in combination

with durations ∆t for the actuation of each primitive. A way to determine them will be

discussed in the following section.

4.4.3 Application of the Holonomic Distribution Control

The problem of finding feasible sequence of primitives and times for their actuation that

satisfy given path constraints is essential for the successful planning. For simplicity,

hereafter only one path constraint will be considered, namely a desired final position

for the end-effector. Furthermore, it is assumed that the initial manipulator configu-

ration is known. In this section the reactionless path planning is defined as an opti-

mization problem. The state variables are chosen to be a sequence of h primitives P =

[P 1
i , P 2

i , P 3
i , ..., P h

i ], and the time for actuation of each of them T = [∆t1, ∆t2, ∆t3, ..., ∆th],

where i = 0,±1,±2, ...,±z. Note that Pz stands for the last available primitive (z), and

P−z accounts for the motion in the opposite direction7. Choosing P0 will result in a sta-

tionary system. It is not necessary to include all primitives, in some cases for example, the

motion in the opposite direction will clearly be unnecessary, hence, it could be disregarded

in order to facilitate the optimization solver.

Apart from the already mentioned path constraint (final position of the end-effector),

the solution to the optimization problem should satisfy the following geometric condition:

φmin ≤ φ ≤ φmax (4.19)

It should be noted that, constraints for the base attitude are not necessary since the

manipulator motion is derived from equation (4.18).
7For the case of the three DOF manipulator in Fig. 4.4 i = 0,±1,±2,±3.
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Judging from the state variables (T and P ) and constraints defined above, the problem

that has to be solved is a typical nonlinear mixed-variables optimization problem. T

represent h continuous variables, and P represents h categorical variables8.

Solution of a mixed-variables problem can be found using different techniques, here a

mesh adaptive direct search (MADS) algorithm is utilized. It is very similar to generalized

pattern search algorithm, however, presents some advantages, since the local exploration

of the space of variables is not restricted to a finite number of directions (called poll

directions). For more details see [12], [11].

Calculation of the manipulator motion and constraints can be performed at kinematical

level9. For given vectors P and T the precess can be described as follows:

Step 0© Initialize counter j = 1, and time t = 0.
Step 1© At time t from the known positions and velocities of the generalized co-

ordinates of the system (rb, vb, φ and φ̇), compute the coupling inertia matrix H̃bm

(the state variables describing the angular motion of the base are not considered since
no attitude change will occur).

Step 2© If t > ∆tj, increment j with one.
Step 3© Use P j to derive the motion rates for the actuated joints (φ̇

a
) from the

null space of H̃
a
bm.

Step 4© Knowing φ̇ (note that φ̇
s

= 0 ), find the base linear velocity (vb) from the
momentum conservation equation (see Appendix C).

Step 5© Integrate vb and φ̇ to obtain rb and φ.
Step 6© Increment t with δt (integration step size).
Step 7© If j ≤ h goto Step 1©.

When the above calculation is over the optimization procedure can evaluate the differ-

ence between the real and desired end-effector position as well as the geometric condition

(4.19) and generate new entries for P and T if necessary.

In general, more entries (state variables for the optimization procedure) in P and

T result in more precise path planning. The same applies for the number of available

primitives, since they provide a diversity of the solution at a local level. On the other

hand the size of h and z affect the convergence rate of the optimization solver, hence, they

should be chosen carefully considering the characteristics of the problem to be solved.

4.4.4 Simulation Study

In this section the results from numerical simulation of a 3 DOF planar manipulator

mounted on a free-floating base body are presented. The parameters of the system are in

Tab. 4.1. The simulation is performed in Matlab 7.0, and the Matlab toolbox Nomadm

8Variables whose values must always come from a predefined list. For example, color, shape, or in the
case discussed here, primitive number.

9Since external forces and torques are assumed equal to zero, computation of the system dynamics is
not necessary.
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Table 4.1: Model parameters

Base Link 1 Link 2 Link 3
m [kg] 40 2 2 2
l [m] 1.0 1.0 1.0 1.0

I [kgm2] 25 0.5 0.5 0.5

[134], that implements MADS algorithm is used as an optimization solver. The results

presented hereafter, demonstrate the ability to generate a reactionless Cartesian path for

the end-effector from a given initial manipulator configuration to a desired final position.

The initial manipulator configuration is taken to be φ̇ = [15, 15,−25] [deg]. The position of

the grasping point of the target satellite in inertial coordinates is assumed to be [1, 1, 0] m.

This is taken as a desired end-effector final position. The available primitives are chosen

to be:

i = 0, 1, 2, 3

The specified initial guess for the optimization procedure is:

P = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] T = [8, 8, 8, 8, 8, 8, 8, 8, 8, 8] sec.

The vector ξ̇
a

used is [0, 0.5]T , and the joint limitations are φmin = −150 [deg] and

φmax = 150 [deg]. The result from the optimization procedure is:

P = [1, 2, 3, 1, 2, 1, 1, 2, 3, 0]

T = [17.47, 12.4, 11.06, 6.27, 4.39, 6.17, 14.07, 3.38, 2.77, 7] sec.

If the above sequence of primitives in P is used, with time durations the entries of T , the

manipulator will reach the desired position in Cartesian space. Fig. 4.5 depicts three ma-

nipulator configurations (initial, intermediate and final one). It can be observed (Fig. 4.5)

that during the motion of the manipulator, the base body undergoes translational motion.

This is expected, since only the base attitude was controlled.

The joint angle and joint angular velocity profiles are depicted in Fig. 4.6. They clearly

show the switching from one primitive to another. The x axis represents the currently

used primitive. The nonsmooth profile of the joint velocities is a result of the constant

magnitude of the parameter ξ̇
a
. Such constant magnitude of ξ̇

a
was used in order to

facilitate the optimization solver. Once a feasible Cartesian path is obtained however, a

smooth joint velocity profile can be generated in a straightforward fashion. Hence, the

time profile of the end-effector on the reactionless path can be additionally specified.
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Figure 4.5: End-effector path in Cartesian space. The manipulator configuration is de-
picted at the initial, intermediate and final positions.

In addition, it should be noted that servo locking the joints not included in the cur-

rently used primitive is just one possible option. Alternatively using predefined profile

for their motion can result in a completely different manipulator behavior. This might

prove to be useful in cases when the currently available primitives cannot provide a desired

manipulator motion.

After obtaining a solution for P and T , the resultant trajectory might be unsatisfactory.

In some cases, discontinuities can be observed during transitions between two primitives.

This fact though unwelcome is by far not unexpected since only a subspace of the space

of possible reactionless motions was utilized. Once a feasible path is obtained however, it

can be used as an initial-guess for a new optimization procedure, where criteria regarding

the smoothness of a given path segment can be included. This new procedure does not

need to use holonomic distribution control. Once a good initial-guess is available most of

the optimization algorithms can converge to satisfactory results.

The merit of the HDC can be found in the fact that it decomposes the entire set

of available solutions into small subsets, that can be utilized much easier. If using one
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subset does not yield satisfactory results it can be changed, and a different one could

be utilized. Finding a solution can not be guaranteed since the nature of the problem

is highly non-linear, however, the HDC provides a reasonable simplification for the path

planning problem. It is worth mentioning that even though the initial guess specified

for the example here was trivial, providing a meaningful one is possible. In some cases,

experienced user can use HDC and by try and error, reach an adequate solution.
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Figure 4.6: Profiles of the joint angles and joint angular velocities.
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4.5 Approaching maneuver to a tumbling target satellite

In the previous section, the target satellite was assumed to be stationary as seen from the

inertial frame fixed in the center of mass of the entire system (chaser plus target). This

assumption simplifies the problem because; (i) estimation of the motion of the grasping

point is not necessary; (ii) before the contact between the end-effector and the grasping

point, there is sufficient time in order to guarantee a soft contact (using impedance control

for example [128]); (iii) if the approaching motion is interrupted as a result of an unex-

pected problem, the input conditions for the motion planner remain the same, hence, it is

easy to restart the approach; (iv) after the contact the motion of the system is negligible,

hence, if a problem occurs, the target satellite can be safely released, with no risk for

collision with the chaser spacecraft. Furthermore, the utilization of attitude devices (as a

result of the capture) is not necessary.

When the assumption of stationary target is dropped, the discussion of the capturing

problem becomes involved. As compared to the stationary case; (i) estimation of the mo-

tion profile of the grasping point is necessary. When the inertia characteristics of the target

are unknown, obtaining a long term estimation is challenging [35], [48], [59], [61], [78]; (ii)

the planning algorithm has to design a feasible approaching trajectory, that minimizes the

contact forces during the impact-phase, as well as the reactions transferred to the base

during the manipulator approaching motion; (iii) if the approach is interrupted, reliable

estimation should be performed again; (iv) during the post-impact phase the momentum

initially stored in the target satellite, transfers to the chaser and imposes difficulties from

the viewpoint of base attitude control. Furthermore, releasing the target satellite leads to

collision risks with the manipulator links and spacecraft’s base. Management of the mo-

mentum of the target has to be performed. If methods for such management are not exam-

ined before the approaching motion, the capturing operation could fail. In [64], [131], [52]

a strategy for such momentum management based on a contact/push based method is pro-

posed. Such strategy is useful when the momentum stored in the target satellite is large,

and direct capture is not possible. If contact/push based method is used, each contact

with the target can be approximated as an impulsive force applied to the end-effector.

In such case, planning of pre-impact arm configuration for minimization of the base re-

actions is advantageous [125], [82], [23], [117], [124]. If however, the manipulator and

grasping point (positioned on the tumbling target) are in continuous contact, planning of

pre-impact arm configuration has to be replaced with planning of pre-impact momentum

distribution [26], [27], as will be discussed in the sequel.

In this section we present a possible solution to some of the difficulties outlined above.

As already mentioned at the beginning of this chapter, we focus on minimizing the base
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Figure 4.7: Model of a space robot capturing a target, where Lbm denotes the coupling
angular momentum between the manipulator arm and the base of the chaser satellite, and
Lt stands for the angular momentum in the target satellite.

attitude reactions during the approaching and post-impact motion. It should be noted

that, although it is tempting to use powerful gas/jet thrusters for this purpose, important

insights are obtained from a familiarity with the “external-torque-free” motion of the entire

system, before and after the contact with the tumbling target object.

The capturing strategy proposed in Section 4.5.1, is based on obtaining a desired

angular momentum distribution in the chaser satellite during the approaching phase in

order to facilitate the base attitude control in the post-impact phase. Furthermore, it

is shown that this strategy, referred to as the bias momentum approach (BMA), can be

utilized in order to facilitate the solution of the trajectory planning problem. In Fig. 4.7

is depicted the most favorable case, when the BMA is utilized, namely when the bias

momentum preloaded in the manipulator during the approaching motion, is with equal

magnitude and opposite direction to the one in the target satellite. Hence, after the

capture the manipulator and target will have angular momentum equal to zero. In the case

when such favorable distribution cannot be obtained the management of the remaining

momentum during the post-impact phase could be carried out using two control laws

introduced in Chapter 5. The first one is at acceleration and the second one at velocity

level. In both Chapter 5, and the following subsection we make use of the coupling wrench
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theorem formulated in Section 4.2.

4.5.1 The Bias Momentum Approach

One of the main characteristics of a capturing operation in orbit is the momentum conser-

vation if there are no external forces. If just the chaser or target system is considered, it

might undergo momentum change, however, in the entire system the conservation law will

hold. Under the present assumptions, during the approaching phase, the angular momen-

tum in the entire system can be sufficiently defined by four variables, namely Lbm, Lr,

Lb, and the angular momentum of the target satellite Lt (see Section 4.3). The amount of

momentum stored in each of them plays an important role for the successful completion of

the capturing operation. The zero attitude change restriction can be expressed as Lb = 0.

In Fig. 4.8 four typical distributions (at the start of the post-impact phase) are depicted.

Next, a comparison among them will be made. In order to do so, it will be assumed that

the manipulator joints are servo locked after the contact with the target, and a simple PD

feedback attitude control via reaction wheels is utilized10.

4.5.1.1 Non-bias distribution

The distribution depicted in Fig. 4.8 Case A is with coupling angular momentum equal to

zero. This case is referred to as “non-bias”. After the contact, Lt distributes over the entire

system. How fast it will be transferred to the base depends on factors like: pre-impact

configuration, force impulse that occurs during the impact phase, post-impact control. In

order to keep the base attitude stationary, the attitude stabilization devices11 should work

to compensate its deviation. As a result of the maximum torque restriction, the reaction

wheels will most likely fail to accommodate the angular momentum transferred to the base

in a short time. Hence, base rotational motion will occur.

One way for obtaining a distribution as the one depicted in Case A is using reactionless

manipulation during the approach to the target. Planning of such reactionless trajectory

however, is not a trivial problem (for more details see Chapter 4.4). A different way

for obtaining Lbm = 0 before the contact with the target is by performing momentum

redistribution as depicted in Fig. 4.9. At a first step angular momentum with magnitude

a is redistributed between the robot arm and reaction wheels. At a second step the initial

momentum distribution is obtained. Such manipulation results in change of the arm’s

configuration. This is a typical behavior of a system under nonholonomic constraints.

If at the start of the capturing operation angular momentum is already stored in the
10This is clearly not the best possible control strategy for the post-impact phase, however, it permits

easy comparison.
11Note that only reaction wheels are utilized for base attitude control.
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Figure 4.8: Four cases of pre-impact angular momentum distribution.

reaction wheels and it is with equal magnitude and opposite direction to the one in the

target, see Case B, the momentum of the entire system will be equal to zero, however,

the transfer rate of Lt towards the attitude devices during the post-impact phase will be

the same as in Case A. Hence, both distributions will yield identical results from the

viewpoint of base attitude change.

4.5.1.2 Bias angular momentum in the manipulator

In both Case B and Case C the angular momentum of the entire system is equal to

zero, however, the latter distribution leads to some advantages from the viewpoint of base

attitude control after the contact with the target. Case C provides different alternatives
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Figure 4.9: Angular momentum management among the reaction wheels and the manip-
ulator.

for post-impact system control. One of them is again using the reaction wheels in order

to compensate the base attitude change. An alternative approach uses the fact that after

the contact, the angular momentum from the target could be canceled out with the one

preloaded in the manipulator arm (Lbm). Therefore, in the post-impact phase just the

remaining amount of angular momentum in the base, manipulator and target should be

redistributed in order the system to come to a complete stop. Since in this particular

case the angular momentum that needs to be redistributed is actually zero, even locking

the manipulator joints will lead to a successful completion of the capturing operation (see

assumption a6 in Section 4.1). We should note however, that if no post-impact control

is applied, base attitude deviation might occur as a result of the impact force generated

during the contact. In order to be successful in controlling the base attitude, such control

has to satisfy the condition in the coupling wrench theorem formulated in Section 4.2.

Since L is constant during the approach, cases B and C imply that momentum was

already stored in the reaction wheels before the start of the approaching phase. This

however, is not necessary (for the application of BMA), as can be seen from the distri-

bution depicted in Case D. In general the definition of a favorable angular momentum

distribution can be summarized as follows:

|Lc
bm| ≤ |Lc

t |
Lc

t Lc
bm < 0

}
(4.20)

where c = {x, y, z} stand for the x, y and z components of a three dimensional vector.

Equation (4.20) actually states that the momentum that should be preloaded in the ma-

nipulator has to be with smaller or equal magnitude and opposite direction to the one in
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the target. The limiting case when Lbm = −Lt, is referred to as “full” bias distribution

and obtaining it is not always possible. Nevertheless this case will be included in the

analysis as well, since it can give important insight into the problem. A bias momentum

distribution which is not “full” and satisfies (4.20) will be called “partial”.

4.5.1.3 Angular momentum management

Here, the problem of obtaining a desired angular momentum distribution in the chaser

system during the approaching phase is discussed. Under the current assumptions, L

remains constant during the approach to the target. However, it will not necessarily be

equal to zero. In the general case, the system of reaction wheels is used for compensation

of environmental torques, therefore before the start of the approach to the target H̃brφ̇r

can have a value different from zero. Solving (4.5) for the joint velocity rates, using ωb = 0

(desired condition) and P = 0, one obtains:

φ̇m = H̃
+
bm(L − H̃brφ̇r) + (Ep − H̃

+
bmH̃bm)ξ̇p (4.21)

where (Ep − H̃
+
bmH̃bm) is the projector onto the null space of H̃bm and ξ̇p ∈ Rp is an

arbitrary vector. For more details see Section 3.1.1. One important property of the null

space component that was already mentioned is that joint velocities derived from it do

not influence the momentum distribution whatsoever. Since L is constant during the

approach, the only member of (4.21) that can redistribute the momentum in the chaser

satellite is H̃brφ̇r. From the constraint Lb = 0 it follows that, joint velocities obtained

from (4.21) will result in such manipulator motion, that the rate of change of Lbm will be

equal to the rate of change of −H̃brφ̇r.

The second component of (4.21) can be utilized in order to additionally constrain the

manipulator motion (see Section 3.2). In the context of this section, a necessary secondary

constraint is the velocity profile of the end-effector. Determination of such profile for ξ̇p

that avoids algorithmic singularity with the first task (using only local optimization via

the pseudoinverse) however, is an arduous problem. On the other hand the solution to the

planning problem is crucial for the successful completion of the capturing operation, that

is why in the next subsection we present a motion planning strategy, based on the fact that

the bias momentum approach is utilized. It should be noted that, the above mentioned

strategy does not make use of the latter term of equation (4.21), in other words, the null

space solution is not employed for the trajectory planning process.

4.5.2 Planning of approaching trajectory when BMA is utilized

Trajectory planning for systems under nonholonomic constraints is a well known research

field. The system under discussion, exhibits nonholonomic behavior as a result of the
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nonintegrability of the angular momentum equation (4.5). In Chapter 1, some of the

commonly used planning strategies for space robots were outlined. Here, the angular

momentum redistribution performed in the chaser satellite during the approaching phase

is utilized for the formulation of a two step strategy for the determination of approaching

trajectory to a tumbling target. When capturing a tumbling object two main factors

should be considered;

f1) the angular momentum of the target object;

f2) the velocity change of the grasping point.

The second one (f2) implies that the approaching trajectory should be designed in such

a way that at the moment of contact, the linear velocities of the grasping point and end-

effector are the same, in order to avoid high impact forces. The consideration of both

factors is critical for the successful completion of a capturing operation. As discussed in

Section 4.5.1, if the BMA is utilized, and momentum redistribution is performed during

the approaching motion of the manipulator, the management of Lt during the post-impact

phase can be facilitated. Note that, such momentum redistribution should not be con-

sidered as additional burden to the trajectory planning. Since, if no momentum is redis-

tributed (BMA is not utilized), the only possibility for manipulator motion (if zero base

attitude change is desired) is in the null space of the coupling inertia matrix H̃bm. Hence,

due to the utilization of the BMA during the approaching phase, some new alternatives

arise.

The momentum to be redistributed during the approach can be determined using two

criteria. The first one is equation (4.20) and the second one is:

rh(tf ) = rg(tf )
ṙh(tf ) = ṙg(tf )

}
(4.22)

where rh(tf ) and rg(tf ) are the positions of the end-effector and grasping point (with

respect to Σi), respectively, and tf is the final time for the approaching maneuver. Next,

two steps of a planning strategy that account for both criteria in (4.20) and (4.22) are

presented. The first step deals only with the position constraint (upper part of (4.22))

and determines a manipulator initial configuration, while at a second step, the velocity

constraint as well as the momentum profile to be redistributed are considered.

4.5.2.1 Step A - Choice of manipulator initial configuration

Here, the motion of the reaction wheels is considered as a control input for the motion

of the robot arm. In other words, the manipulator moves in a way that guarantees zero

attitude change, by absorbing the angular momentum transferred from the reaction wheels
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to the base body. Such motion can be obtained using the former component of (4.21).

Hence, specifying the torque profile to be applied in the attitude devices during the ap-

proach, determines the manipulator motion from initial configuration φm(t0) to a final

one φm(tf )12.

With a fixed input command13, one can satisfy the condition in the upper part of

(4.22) by choosing a proper initial configuration for the manipulator arm (φm(t0)). Here,

the search for appropriate φm(t0) is defined as a standard optimization problem, with the

p initial joint angles as state variables, objective function:

Y A
ob = rh(tf ) − rg(tf ) (4.23)

and the following geometric constraint:

φmin
m ≤ φm ≤ φmax

m (4.24)

Note that this is just an intermediate step whose aim is to determine initial manipulator

configuration that accounts for the specific input command defined, and the upper part of

(4.22). The objective function (Y A
ob ) does not necessarily need to converge to zero (error

tolerance is admissible). Fine-tuning is performed at a second step. The torque profile of

the reaction wheels should be defined such, that result in obtaining a favorable momentum

distribution, as defined in (4.20). If obtaining a desired momentum distribution is not

necessary, choosing a particular manipulator initial configuration is not required. In such

a case, the planning can be made directly using Step B, which will be discussed next.

4.5.2.2 Step B - Determining the Momentum Profile

In this step the condition of fixed torque profile is dropped, and finding such input com-

mand that results in manipulator motion satisfying both constraints in (4.22) is desired.

For this purpose, the trajectory planning problem is defined as; planning a point-to-point

motion from a known initial end-effector position in Cartesian space rh(t0)14 to rg(tf ),

with the following nonlinear velocity constraints:

ṙh(tf ) − ṙg(tf ) = 0 (4.25)

Furthermore, apart from the geometric restrictions in (4.24) the following dynamic con-

straints should be satisfied as well:

τmin
r ≤ τ r ≤ τmax

r (4.26)
12This motion could be altered using the null space component in (4.21), however at this stage it will

not be considered.
13The input command is the profile of the torque in the reaction wheels.
14Which corresponds to the initial manipulator configuration, determined in Step A.



4.5 Approaching maneuver to a tumbling target satellite 79

The torque profile of the reaction wheels are chosen as state variables15. As can be seen in

the constraint equations (4.24), (4.25) and (4.26) there is no term that accounts for base

attitude minimization. This is because zero spacecraft attitude is guaranteed merely by

the fact that the manipulator is controlled using (4.21). Hence, the objective function can

be chosen to satisfy some different criteria (for example minimal path length.).

Y B
ob =

∫ tf

t0

√
ṙT

h ṙh dt (4.27)

If the initial manipulator configuration is chosen arbitrary not using the algorithm in

Step A, Step B can still be utilized for finding the torque profile of the reaction wheels

that satisfy the position and velocity constraints. The resulting momentum redistribution

during the approach however, will not be easily predictable.

It is obvious that for the problem at hand, using techniques from optimal control,

cannot guarantee solution in each case. Evidently, combination of Step A and Step B

cannot always yield a favorable momentum distribution as in (4.20). We however, observed

that for “reasonable” choice of position and velocity constraints, the solutions are very

sensitive to the length of the approaching maneuver tf and the constraint in equation

(4.26). Since the torque limitation of the reaction wheels is a constraint that cannot

be altered (in a practical case), varying the time for the approach (tf ) in many cases is

sufficient for the optimization algorithm to converge to satisfactory results16. Example

that shows the results from both optimization procedures is presented next.

4.5.2.3 Simulation Study

Here, the trajectory planning sequence discussed in the previous subsection is applied for

a seven DOF manipulator mounted on a free-floating base. It is assumed to make contact

at tf = 30 sec. with a target satellite which is rotating with constant angular velocity

ωbt = [−0.02,−0.02,−0.02]T rad/s and has angular momentum Lt = [−3, −3, −3]T Nms.

The grasping point is positioned at rb
g = [−0.5, −0.5, 0.5]T , where rb

g is expressed in the

target body fixed frame. The torque limitation of the reaction wheels is 0.2 Nm. The

parameters of the chaser system are in Appendix F. Two cases are considered:

S� determining the manipulator initial configuration using Step A;

S�� trajectory planning using Step A and Step B.

15In Section 4.5.3 the choice of state variables and their influence over the result of the optimization
procedure is discussed.

16Note that, the time duration of the approaching motion can be arbitrary specified.
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The position and linear velocity of the grasping point at tf = 30 are determined to be:

rg(tf ) = [2, −1.2, 1.54]T m

ṙg(tf ) = [−0.0002, 0.0201, −0.0199]T m/s

The evaluation of the constraints and objective function is done using a simulation at

kinematical level. Since no external forces are acting during the approach, computation

of the system dynamics is not necessary17. The computational sequence used is outlined

next:

Simulation at kinematic level:

Step 1© Start at time t = 0 when positions and velocities of the generalized coor-
dinates of the system are known (Ab, rb, vb, φ, φ̇), and compute the inertia matrices
Hb and Hc (Ab is the rotational matrix of the base).

Step 2© Using equation (4.21), from the known values of the input variables φ̇r,
determine the manipulator joint velocities (φ̇m). This particular motion of the manip-
ulator and reaction wheels will result in zero base attitude change.

Step 3© Find the linear velocity of the base solving equation (C.17) (note that ωb

is not considered, since it is equal to zero).
Step 4© Integrate vb and φ̇ to obtain rb and φ.
Step 5© Using Ab, rb, φ and φ̇ the computation of the constraint equations (4.22),

(4.24), as well as the objective functions (4.27) or (4.23) is straightforward.
Step 6© Goto Step 1©.
Note that since the torques of the reaction wheels are chosen to be state variables for

the optimization procedure in Step B, φ̇r should be computed by numerical integration
of φ̈r, which is given as:

φ̈r = H̃
−1
br τ r

In Fig. 4.10 a comparison between the results from cases S� and S�� is made. The

input command (profile of the torque in the reaction wheels) for case S� is chosen to be

τ r = [−0.1, −0.1, −0.1]T Nm during the entire approaching phase, hence, loading the

manipulator with Lbm = [3, 3, 3]T Nms, which is a “full-bias” momentum distribution.

The initial guess for the optimization routine was specified to be:

φ̇
ig
m = [−10, 20, 25, −35, −160, 30, 20]T deg,

which was arbitrary chosen in order to position the manipulator end-effector in the vicinity

of the grasping point. The solution obtained is:

φ̇m(t0) = [−10.3, 22.6, 14.9, −35.6, −150.6, 32.2, 16.6]T deg,

Note that since in this case, just the end-effector positioning subtask is considered the

linear velocities (case S�) do not converge to the values of ṙg(tf ) (Fig. 4.10).
17This is done in order to achieve computational savings.
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Using the manipulator initial configuration calculated above, in Step B of the trajec-

tory planning procedure, the torque profile of the reaction wheels is altered in a way that

satisfies the velocity constraints as well. The initial guess for the profile of τ r (state vari-

ables for this optimization routine) is the same as the one used in case S�. The resultant

profile is depicted in Fig. 4.11. Both end-effector position and velocity constraints for case

S�� are satisfied, and the momentum distribution obtained meets the requirements of

(4.20) (Lbm = [2.46, 1.43, 0.41]T Nms)18. The manipulator configuration in case S�� at

t0 and tf is depicted in Fig. 4.12. A small base translational motion can be observed,

which is expected since it is not controlled. The manipulator motion sequence is depicted

in Fig. 4.13.

18The results from both Step A and Step B are obtained using Matlab’s Optimization Toolbox (fmincon)
[133].



82 Chapter 4 Approaching phase of a satellite capturing operation

Figure 4.10: End-effector position and velocity in cases SA and SAB (x, y, z axis).
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Figure 4.11: Profile of the torques in the reaction wheels derived using Step A and Step
B from the trajectory planning procedure.

Figure 4.12: Manipulator configuration at t0 and tf for case S��.
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Figure 4.13: Motion profile of the manipulator from t0 to tf for case S�� (the view angle
is different from the one in Fig. 4.12).
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4.5.3 Comparison between different state variables

In the previous subsection a two step trajectory planning sequence was utilized for defining

the manipulator approaching motion. In Step B, optimization solver was used to deter-

mine the torque profile to be applied in the reaction wheels. Once this profile is known,

using equation19 (4.21) the manipulator motion can be determined. Here, an alternative

approach will be adopted, namely the manipulator joint velocities will be chosen as state

variables for the optimization procedure, and the velocities of the reaction wheels will be

determined using:

φ̇r = −H−1
br Hbmφ̇m (4.28)

The two alternatives;

Ar) torque in the reaction wheels as state variables;

Am) velocity of the manipulator joints as state variables;

lead to different solutions for the system motion (using the same optimization solver), and

will be compared hereafter. The reason for choosing case Ar in Section 4.5.2.2 is discussed.

There are two main drawbacks when the manipulator joint velocities are chosen to be

state variables for the optimization procedure:

a.) The number of state variables increases proportionally to the number of DOF of

the manipulator. Hence the space in which solutions are being sought is larger.

b.) The optimization solver changes directly the profile of φ̇m.

Obtaining reasonable motion profile for the manipulator joints is as important as find-

ing satisfactory Cartesian trajectory for the end-effector. Specific motion in joint space

may be desirable for overcoming limitations related to the manipulator structure, like

kinematic singular configurations. In many cases obtaining solutions with minimal joint

velocity norm is preferred. Furthermore, it might be necessary to separate the joint space

in two sets of components, which perform different tasks. If state variables as in case Am

above are chosen, the solution of such problems might be possible if additional constraints

to the optimization solver are imposed. This however, is not the best possible solution as

it will be pointed out next.

Once φ̇m are chosen for the current step of the optimization algorithm (case Am), the

motion of the entire system is predetermined, (see equation (4.28)), hence, the solution is

very much dependent on the solver type. One way to deal with this problem is to use a

different set of state variables. A good candidate is the torque in the reaction wheels.
19In the case when base attitude motion does not occur, a direct relation between the torques applied

in the reaction wheels and the resultant change of their angular velocities can be made (non-linear effects
do not occur).
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If the motion rates of the reaction wheels are known, motion of the manipulator that

satisfies specific requirements can be found by using the following equation (similar to

(4.21)):

φ̇m = −H̃
#
bmH̃brφ̇r + (Ep − H̃

#
bmH̃bm)ξ̇p (4.29)

where (·)# denotes a generalized inverse of a matrix. Different requirements can be im-

posed by changing the type of generalized inverse, or by using the null space component.

Using a particular relation between φ̇r and φ̇m permits additional adjustments to be made.

In other words, the optimization solver interacts with φ̇m through a “filter” (the type of

generalized inverse employed), that can be specified by the user. That is one of the reasons

for the torques of the reaction wheels to be chosen as state variables for the optimization

procedure in Section 4.5.2.2. Next, a numerical example that illustrates the discussion

above is made.

4.5.3.1 Simulation Study

In this section a comparison through numerical simulation between two different sets

of state variables for the optimization procedure used in Section 4.5.2.2 is made. The

constraints in equations (4.22) and (4.26) are imposed. Minimal path length determines

the value of the objective function (4.27). The simulations are performed in Matlab 7.0,

and the solver fmincon from the Matlab Optimization Toolbox [133] is utilized.

Three cases are discussed:

C1: The manipulator joint velocities are the state variables.

C2: The joint torques of the reaction wheels are state variables,

(pseudoinverse is utilized, without null space solution).

C3: The joint torques of the reaction wheels are state variables.

(coordinate partitioning20 is utilized, without null space solution).

For the three cases the following parameters are the same:

τmax
r = [0.2, 0.2, 0.2]T Nm

τmin
r = [−0.2, −0.2, −0.2]T Nm

rg(tf ) = [1.8, −1.8, 1.7]T m

ṙg(tf ) = [0.0031, 0.0033 − 0.0025]T m/s

φ(t0) = [−10, 20, 25, −35, −160, 30, 20, 0, 0, 0] deg
20The method for coordinate partitioning utilized is described in Section 3.1.1.2 Case B (with the values

of the independent joint velocities 	̇
i
= 0.)
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The results from the three optimization procedures are depicted as follows (the initial

guess for all of them is trivial):

Fig. 4.14 shows the Cartesian positions and velocities of the end-effector. With the

specific constraints imposed, the solutions for the end-effector motion from the three pro-

cedures are very similar21. There is almost no difference, between Y B
ob in cases C1, C2

and C3 as well. Although for the case discussed here such observation can ba made, in

general, such resemblance can not be achieved22, as will be discussed in the sequel.

Fig. 4.15 depicts the torque profile of the reaction wheels. Fig. 4.16 contains the

manipulator joint velocities for all three cases. Let us consider first case C2. As a

result of the utilization of pseudoinverse, the solution to the optimization problem yields

(locally) minimal manipulator joint velocity norm (see Tab. 4.2 Sm) for a given motion of

the reaction wheels. It is evident that in case C2 the norm of the torque profile (Sr) is

the highest one. In some cases, system motion where fast velocity change of the reaction

wheels results in slow motion of the manipulator might not be desirable. Nevertheless, in

other this effect is mostly helpful. For example, when momentum needs to be redistributed

(between the reaction wheels and manipulator) in a way that results in low manipulator

joint velocity rates, the utilization of redundancy resolution based on pseudoinverse is

advantageous. If approach as in C1 is adopted, in order to ensure low value for Sm,

additional constraints need to be imposed. Such constraints can degrade the convergence

rate of the optimization solver, furthermore, the resultant output is very sensitive to the

specified initial guess. Even though the pseudoinverse approach guarantees only local

minimum of Sm, in many cases it is sufficient enough.

Table 4.2: Output from the optimization procedures.

C1 C2 C3
Sm 14.85 9.29 11.31
Sr 51.9791 84.1925 79.7115
Y B

ob 0.7031 0.7058 0.7029

Sm =
∑i=tf

i=0 ||φ̇m(ti)|| ; Sr =
∑i=tf

i=0 ||τ r(ti)||

In case C1 the overall torque applied to the attitude devices is less than the one ap-

plied for cases C2 and C3. (see Tab. 4.2 Sr). Furthermore, the norm of the manipulator

joint velocities in C1 is higher than the one in cases C2 and C3 (see Tab. 4.2 Sm). This

shows that the routine based on equation (4.28) found system motion, where fast ma-

21In all three cases the constraints are satisfied as well.
22For the sake of comparison, a case when 
1, 
2 and 
3 converge to a solution is presented.
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nipulator movement corresponds to small reaction wheels torques. This effect, however,

was not intended, and if different constraints are imposed the solution can easily change.

A numerical simulation was performed with end-effector constraints as the one used in

Section 4.5.2.2, and the algorithm in case C1 (with trivial initial guess) did not converge

to satisfactory results. Even when initial guess was properly specified, the time for con-

vergence was long. In addition, considering the joint velocity profile for case C1, it can be

noted that φ̇m is not “smooth”23. This results from the fact that the optimization solver

changes it directly. As mentioned at the beginning of this section the generalized inverse

works as a filter for the manipulator motion. This can be seen from the profiles of the

joint velocities in cases C2 and C3.

The utilization of different generalized inverse in (4.29) can result in constraining the

system in a different way. As an example, coordinate partitioning (case C3) is utilized

via equation (3.20) (see Section 3.1.1.2 Case B). The values of the independent joint

velocities are set to zero. The first three joints of the manipulator are chosen to be the

dependent set of coordinates which will be used to control the system. As evident from

Fig. 4.16 (B), joints number 4, 5, 6 and 7 are not actuated in case C3. Only the motion of

joints 1, 2 and 3 is sufficient to perform base attitude control and end-effector positioning

control simultaneously (proven that the torque profile of the reaction wheels is chosen

appropriately). The unactuated joints can be utilized for the satisfaction of additional

requirements. From the above discussion it can be noted, that the 7 DOF manipulator has

four DOR, although six constraints are imposed (base attitude, and end-effector Cartesian

position). The reason for this is that the motion of the three reaction wheels is used as a

control input for the manipulator motion (hence, they provide three additional DOF). The

desired momentum to be redistributed can be considered to be a nonholonomic constraint,

since it does not decrease the dimension of the configuration space, but rather imposed

an instantaneous velocity condition.

Finally, it should be noted, that the computational time for case C1 is the highest one,

which is to be expected since the number of state variables used for the optimization pro-

cedure is higher. Nevertheless, since all three cases are intended for off-line computation,

this is not a critical issue. Using both sets of state variables (manipulator joint velocities

and joint torque) leads to some advantages, and their combined use might be beneficial.

For example, planning based on state variables as in C2 is performed first, at a next step,

the obtained result is used as an initial guess for a procedure based on state variables as

in C1. In such a way it might be possible to refine the results.

23Here, the term “smooth” is used to express consistency, or regularity.
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Figure 4.14: Position and linear velocity of the end-effector.
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Figure 4.15: Profile of the torque in the reaction wheels (x, y and z axis).
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Figure 4.16: Joint velocities.
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4.5.4 Bias Momentum Approach - verification by simulation

In this subsection, simulation results that verify the strategy presented in Section 4.5.1

are presented. Two cases will be considered:

F approaching phase: full bias momentum

post-impact phase: the manipulator joints are locked

(no attitude control);

N approaching phase: non-bias momentum

post-impact phase: the manipulator joints are locked

(attitude control via reaction wheels);

As noted in Section 4.5.1, locking the manipulator joints at the start of the post-

impact phase and using only reaction wheels for base attitude control is clearly not the

best possible strategy to be taken. Nevertheless, it allows a comparison between bias and

non-bias momentum distributions to be made.

In case F input command for the reaction wheels as in S� is used, which results in

obtaining a “full-bias” momentum distribution in the chaser satellite. As mentioned in

4.5.1, if “full-bias” momentum distribution is obtained, locking the manipulator joints

during the post-impact phase leads to a successful completion of the capturing operation,

as a result of the cancelation of Lbm and Lt. The base attitude profile in cases F and N is

depicted in Fig. 4.17. Note that the base attitude change in the “full-bias” case right after

the contact with the target is a result from the impact force generated (ṙh �= ṙg for the

trajectory in S� see Fig. 4.10). As can be seen, in the non-bias case angular momentum

is transferred repeatedly to the base body, and due to the torque limitation, the reaction

wheels are unable to compensate it. Recall that in case N , Lbm = 0 at the moment of

contact with the target satellite24.

The profile of the angular momentum before and after the contact with the target is

depicted in Fig. 4.18.

As it becomes evident from the results above, the method of obtaining a favorable

momentum distribution in the manipulator when a tumbling target has to be captured,

resembles the method of obtaining a pre-impact arm configuration for base reactions min-

imization, when an infinitesimal force impulse is applied at the end-effector [82]. The

similarity is in view of the fact the both methods make preparation during the approach-

ing phase. The aim of such preparation is to facilitate the post-impact base motion control.
24In order to make a fair comparison, the manipulator configuration at the beginning of the post-impact

phase should be identical for both cases. Defining a trajectory for the non-bias case that results in such
configuration is difficult, that’s why case � is considered just during the post-impact phase.
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It should be noted that, in the case of a tumbling target the magnitude and direction of

the contact forces has to be assumed unknown and constantly changing, hence, a particu-

lar pre-impact manipulator configuration does not provide significant advantages. As for

the angular momentum, it is a conservative quantity and does not depend on the inter-

nal wrenches in the system. Note, that the contact forces/torques are internal from the

viewpoint of the entire system consisted of the chaser and target satellites.

Apart from occurring as a result of intentional control, servo lock of the manipulator

joints can happen in case of manipulator failure. In such a case, the utilization of a full-

bias angular momentum distribution will guarantee the safe completion of the capturing

operation.

The above discussion treats only the case of full and non-bias momentum distributions.

In practice, however, they are most unlikely to appear25. The application of the former

one depends on the manipulator mass and inertia characteristics. In general, they might

not be sufficient in order for the arm to store a full-bias momentum distribution because:

− the angular momentum in the target object can be large;

− the manipulator joint velocity rates have to be kept in reasonable range.

The application of the latter case (N ) leads to difficulties during the planning phase.

The generation of an end-effector reactionless trajectory to a generic point in Cartesian

space, for a 6 or 7 DOF manipulator is still a challenge (approach for reactionless path

planning is discussed in Chapter 4.4). From the above discussion it can be assumed that

the most likely momentum distribution at the beginning of the post-impact phase is a

partial one. Its treatment will be extended in Chapter 5.

25Nevertheless, the discussion of cases � and � gives valuable insight into the problems appearing
during a capturing operation.
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Figure 4.17: Comparison of the base attitude change in case of full-bias and non-bias
momentum distributions (x, y and z axis).
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Figure 4.18: Angular momentum distribution for the full-bias and non-bias cases (x, y
and z axis).





Chapter 5

Post-impact motion control issues

In Chapter 4 the approaching motion of the chaser system was discussed. A bias momen-

tum approach that utilizes momentum redistribution between the robot arm and a system

of reaction wheels was introduced. It proved to be useful for planning an approaching

trajectory to the target satellite as well as for facilitating the post-impact control. It was

demonstrated that in the case when full bias momentum distribution is obtained, even

locking the manipulator joints leads to a successful completion of the capturing operation

(with minimal base attitude change). In many cases, however, achieving such favorable

momentum distribution is not possible. In those cases relying only on the attitude devices

may not be the optimal solution [27]. The treatment of problems that can occur after the

contact with the target object is extended in this chapter.

After establishing contact with the target, Lt distributes over the chaser satellite. The

objective is to manage the momentum in the entire system in such a way that it does

not affect the base attitude motion. Two control laws that satisfy this desired condition

are proposed. Both of them achieve minimal base attitude change exploiting the dynamic

coupling between the manipulator and spacecraft. The first one is at acceleration and the

second one at velocity level. Note that, information about the forces acting between the

end-effector and grasping point is not needed.

5.1 Reaction Null Space Control

The transition between the approaching phase and the post-impact phase can change the

degree of redundancy1 of the system. Since there is no more need to follow a desired

trajectory, the system can be constraint in a different way.

The primary task will be again keeping the base attitude zero and let the secondary

one be minimization of the joint velocities. Extracting the first equation from (4.4) and
1The term DOR was defined as the difference between the DOF of the system and the task constraints

imposed.
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solving it for φ̈m we obtain:

φ̈m = −H̃
+
bm(H̃bω̇b + H̃brφ̈r + c̃b − J̃

T
bhFh) + R̃

n
ξ̈p (5.1)

where the second term denotes the joint accelerations from the angular reaction null space

R̃
n

(ξ̈p ∈ Rp is an arbitrary vector). Expressing φ̈r from the third equation of (4.4) and

substituting it together with φ̈m from (5.1) into the middle part of (4.4), one obtains:

H̄ω̇b − H̄rτ r + c̄n + H̃mR̃
n
ξ̈p = τm + H̄fFh (5.2)

where the new matrices are defined as follows:

H̄ = H̃
T
bm − H̃mH̃

+
bmH̃b + H̄rH̃

T
br

H̄r = H̃mH̃
+
bmH̃brH̃

−1
r

H̄f = J̃
T
mh − H̃mH̃

+
bmJ̃

T
bh + H̄rJ̃

T
rh

c̄n = c̃m − H̃mH̃
+
bmc̃b + H̄rc̃r

The nonlinear feedback

τ rnsc
m = H̄ub − H̄rτ r + c̄n + H̃mR̃

n
um (5.3)

defines a feedback linearizing controller for equation (5.2), where ub and um are new

control input variables. Using (5.3), the closed-loop equation becomes:

H̄(ω̇b − ub) + H̃mR̃
n
(ξ̈p − um) = H̄fFh (5.4)

Equation (5.4) represents a superposition of two decoupled dynamical subsystems.

With the assumption that the system of interest has a strong inertial coupling [108], which

implies that the matrix H̄ ∈ Rn×3, has full rank, with proper choice of the control inputs

ub and um, two control tasks could be performed simultaneously;

(a) satellite base attitude control using H̄ub;

(b) manipulator control sub-task using H̃mR̃
n
um.

Thus a full decoupling of the base attitude dynamics from the manipulator dynamics can be

achieved. Therefore, we can use the reaction null space component in order to perform joint

velocity minimization that will not alter the angular momentum distribution whatsoever.

In order to achieve that, let us specify the control inputs in the following way [82];

ub = −Kbωb ; um = −Kmφ̇m
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where Km and Kb are positive-definite gain matrices for manipulator motion and base

damping. Substituting them back into (5.3), the control law becomes:

τ rnsc
m = −H̄Kbωb − H̄rτ r + c̄n − H̃mR̃

n
Kmφ̇m (5.5)

The first term of (5.5), guarantees that the manipulator will “absorb” all the angular

momentum from the base, and the last one will perform joint velocity minimization. The

second component (H̄rτ r) accounts for the acceleration change of the reaction wheels.

The nonlinear term c̄n performs feedback linearization.

It should ne noted that, in (5.5) there is no term accounting for the inertia characteris-

tics of the target satellite. During the post-impact phase the target will be in contact with

the end-effector, nevertheless, even without taking this into account, with proper choice

of the two gain matrices, stable base attitude can be achieved.

The computational burden when a control law at acceleration level is applied is in

generally high. This might be considered as a drawback. In the next subsection we

propose a remedy to this problem introducing a control law at velocity level.

5.2 Distributed Momentum Control

The angular momentum conservation equation has linear form at velocity level. It is

much simpler than the equation of motion at acceleration level, and still fully expresses

the system dynamics. This permits the formulation of a control law with simpler structure

compared to the reaction null space control (RNSC) [82] from the previous section. By

taking into consideration the coupling wrench theorem (see Section 4.2), we propose the

following control:

φ̇
d
m = H̃

+
bm(H̃bmφ̇m + H̃bωb) (5.6)

where φ̇
d
m is the desired value for the manipulator joint velocities which would guarantee

zero base attitude change. Equation (5.6) is called distributed momentum control (DMC).

If applied for controlling the arm during the post-impact phase of a tumbling satellite

capturing operation, (5.6) will guarantee minimal base attitude deviation. As can be seen

DMC includes no information about the inertia characteristics of the target object, and

it’s implementation is straightforward.

To begin with the derivation of (5.6), we note that the angular momentum of the target

satellite can be expressed as:

Lt = H̃btωbt + rbt × P t (5.7)
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Figure 5.1: Angular momentum “flow” when DMC is used.

where subscript t shows that the variables describe the target satellite. Addition of (4.5)

and (5.7) leads to:

L + Lt = H̃bωb + H̃bmφ̇m + H̃brφ̇r + H̃btωbt + P f (5.8)

where P f = r̂bgP + rb × P + rbt × P t. Now substitution of (5.6) into (5.8) (noting that

H̃bmH̃
+
bm is a unit matrix) leads to:

H̃bωb = 0

Hence, proving that if the manipulator is controlled using (5.6), it will “absorb” the angular

momentum transferred to the base body, resulting in minimal attitude change.

Note that the utilization of the DMC is not limited only to the post-impact phase. If

applied during the approach to the target, for the redistribution of angular momentum,

it yields identical results to equation (4.21). This can be proved by equating the right

hand sides of (4.21) and (5.6) to obtain the angular momentum conservation law (4.5). It

should be noted that including a null space component in (5.6) is possible only in the case

when the mass and inertia characteristics of the target satellite are known.

Fig. 5.1 depicts the angular momentum “flow” when DMC is applied. When the

reaction wheels are not utilized the momentum is repeatedly exchanged only between Lt,

Lbm and Lp. Note that because Lb is kept equal to zero at all times, Lbm can become

zero only when the system is at rest. Such state can be achieved if the unknown amount

of momentum stored in Lt, Lbm and Lp is transferred in the attitude devices.

The properties of DMC described above show that through the entire capturing oper-

ation only one simple control law could be utilized in order to perform:
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- angular momentum redistribution during the approaching phase,

- base attitude minimization during the post-impact phase.

In the next two sections examples with both reaction null space control and distributed

momentum control are included.

5.3 Application to single arm manipulator

For the simulations here, the torque profile for the reaction wheels as obtained in case

S�� (Fig. 4.11) is used. Again the manipulator is controlled using equation (4.21) (with

L = 0, and ξ̇p = 0). This leads to a partial bias momentum distribution in the chaser

system. During the post-impact phase (starts at t = 30 sec.), while the remaining mo-

mentum is accommodated in the reaction wheels, DMC / RNSC is applied in order to

maintain zero base attitude. The profile of the angular momentum in the reaction wheels,

manipulator and target during the capturing operation is depicted in Fig. 5.2. As can

be seen, after the contact with the target the attitude devices continue to accommodate

the remaining momentum2 until the manipulator and target come to a complete stop. In

general, the utilization of both post-impact control laws can be done just for a limited

amount of time since joint angle limitations could be reached. In this sense using the bias

momentum approach during the approaching phase, reduces the amount of momentum left

for accommodation after the contact. Hence, BMA facilitates the post-impact control.

During the post-impact phase the end-effector is in contact with the target object,

hence, from the viewpoint of the chaser satellite a continuous external disturbance is

exerted. In the case discussed here, the manipulator motion should guarantee the condition

of the coupling wrench theorem in order for the base attitude to remain stationary. It should

be noted that since the linear motion of the spacecraft is not controlled, the derivative of

the coupling angular momentum ( d
dtLbm) with respect to time is equal only to the reaction

moments exerted on the base.

The resulting base attitude is depicted in Fig. 5.3. It shows that both post-impact

controls used are successful in achieving minimal base attitude change without information

about the mass or inertia characteristics of the target object.

It is interesting to note that, even though joint velocity minimization is performed3

when RNSC is applied, the joint velocity rates in the case when the manipulator is con-

trolled using DMC are with lower magnitude. Comparison is made in Fig. 5.4-Fig. 5.5.

2Since 
bm = [2.46, 1.43, 0.41] Nms at the beginning of the post-impact phase, the remaining momentum
to be stored in the reaction wheels is [0.14, 1.57, 2.59] Nms.

3During the application of reaction null space control, the following gains were used:
�m = diag(10, 10, ..., 10) ∈ Rp×p, �b = diag(25, 25, 25) ∈ R3×3.
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Figure 5.2: Angular momentum distribution when DMC and RNSC are used during the
post-impact phase (x, y and z axis).



5.3 Application to single arm manipulator 103

Figure 5.3: Base attitude comparison when DMC and RNSC are used (x, y and z axis).
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Figure 5.4: Joint (1-6) velocity rates when DMC and RNSC are used.
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Figure 5.5: Joint (7-10) velocity rates when DMC and RNSC are used.
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5.3.1 Utilization of gas/jet thrusters for attitude control

From the simulation results presented at the beginning of this section (Fig. 5.2-Fig. 5.5.)

it becomes clear that the utilization of manipulator post-impact control for base attitude

stabilization is advantageous. The discussion up to now was performed under the assump-

tion that the available gas/jet thrusters are turned off. In this subsection however, this

assumption will be dropped and thrust power will be used for base attitude control. The

resulting system motion will be compared with the one when distributed momentum control

is utilized. The aim of this subsection is to demonstrate the merits of using post-impact

manipulator control even though powerful attitude devices are available.

Two cases will be considered:

T approaching phase: partial bias momentum

post-impact phase: the manipulator joints are locked

(attitude control via gas/jet thrusters, reaction wheels are not utilized);

P approaching phase: partial bias momentum

post-impact phase: distributed momentum control is utilized.

In both cases T and P , during the approaching phase, the partial bias momentum dis-

tribution obtained after the application of Step B of the trajectory planning procedure

in Section 4.5.2 is used (Fig. 4.10, case S��). This leads to a value of the coupling

angular momentum Lbm = [2.46, 1.43, 0.41]T Nms at the beginning of the post-impact

phase (t = 30 sec.). The simulation in case P is the same as the one made in Section

5.3, nevertheless it will be recycled hare as well, in order to make a clear comparison

with the case when thrusters are used for base attitude control. As in Section 5.3 the

target satellite has angular momentum Lt = [−3, −3, −3]T . As already noted, momen-

tum distribution in the manipulator as the currently obtained is a favorable one, since the

actual amount of momentum that needs to be redistributed during the post-impact phase

is Lt + Lbm = [−0.54, −1.57, −2.95]T .

Remark:
Again the utilization of the bias momentum approach during the approaching phase

should be emphasized. It is clear that, managing the actually remaining angular mo-
mentum is much easier that doing so with the originally available one in the target
satellite.

The main disadvantage of control strategies based on utilization only of powerful

thrusters (as the on in case T ), is the waste of expensive and nonrenewable resource

as reaction jet’s fuel. Furthermore, trying to suppress the base attitude motion without

taking into consideration the nonlinearity effects resulting from the complicated system
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dynamics might lead to unsatisfactory results from the viewpoint of attitude stabiliza-

tion as well. On the other hand it should be considered that reaction jets with different

capacity and accuracy exist. Not all spacecrafts are equipped with powerful thrusters.

Furthermore, reaction controllers do not possess the same linear relationship between the

input of the controller and its output torque (they are active in an on-off mode). Hence, it

is difficult to perform the same fine attitude control as a manipulator arm does. It should

be noted that, once momentum is stored in a system of reaction wheels its dumping can

be performed using different methods. Some of them4 do not require the utilization of

expensive thruster power. For more information about characteristics of attitude control

systems see [105]. Although in practice thrusters are controlled using bang-bang or pulse

width modulation based control, here for simplicity a PD feedback will be used.

The angular momentum profile in cases P and T is depicted in Fig. 5.6. The base atti-

tude profiles are compared in Fig. 5.7. Although with small amplitude, in case T the base

oscillates. This however is not critical, since it is related to the gains for the PD controller.

Finally, in Fig. 5.8 the torque applied by the thrusters is depicted. In total, the absolute

value of the momentum change through the post-impact phase is [1.12, 5.37, 7.35] Nms.

This is in times more than the minimum necessary one [−0.54, −1.57, −2.95] Nms. Such

waist of fuel can is critical for the life of a spacecraft system, and should be avoided when-

ever possible. Hence, the utilization of post-impact control for the manipulator system is

absolutely necessary requirement for future capturing missions.

4For example, magnetic unloading of the reaction wheels [105].
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Figure 5.6: Comparison of angular momentum distributions in case of DMC, and attitude
control via thrusters.
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Figure 5.7: Comparison of the base attitude deviations in case of DMC, and attitude
control via thrusters.
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Figure 5.8: Torque applied by the thrusters.
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5.4 Application to dual manipulator system

In this section a dual-arm manipulator is assumed to be mounted on the chaser spacecraft.

The parameters of the system are included in Appendix F. Only the post-impact motion

is considered and the manipulator is controlled using DMC.

As it was mentioned in Section 2.4.2, after a dual-arm manipulator system establishes

contact with a target satellite a closed loop is formed. Hence, the remaining degrees of

redundancy (DOR) are less than the DOF of the original system (before the capture). In

such case, controlling only an independent set of joints is sufficient to guarantee minimal

base deviation. Here, joints 1, 3 and 5 are (arbitrary) chosen to be this independent set5.

The angular momentum profile for this case is depicted in Fig. 5.96. Reaction wheels are

not utilized to accommodate the momentum of the target satellite, and as a result the two

manipulators perform continuous motion. The resulting base attitude change is depicted

in (Fig. 5.10). Finally, the initial and final system configurations are compared in Fig. 5.11

(the actively controlled joints are indicated with red circle).

Figure 5.9: Angular momentum distribution for the dual-arm case.

5Choosing any set of joints does not alter the result, hence, in this sense controlling only one of the
arms would be sufficient.

6The angular momentum in both manipulators is included in the profile of 
bm.
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Figure 5.10: Base attitude deviation for the dual-arm case.
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Figure 5.11: Initial and final manipulator configurations in the post-impact phase.



Chapter 6

Conclusions and future work

In this dissertation, several fundamental issues arising during the analysis of a satellite

capturing operation are studied. A systematic treatment of different problems related to

path and trajectory planning is made. The different phases of interaction between a chaser

and target satellites are studied and solutions that might overcome practical difficulties

are presented. In the sequel, the contents of this dissertation is summarized, and some

possible directions for future research are proposed.

6.1 Summary

Chapter 1 introduces different problems that need to be dealt with in order to successfully

perform servicing, inspection and assembling operations in orbit. A brief literature review

of the dynamic modeling, planning and control strategies (related to a satellite capturing

operation) introduced up to now is made. These serve as a motivation for the following

study.

Chapter 2 includes a general formulation for the kinematics and dynamics of manipu-

lator systems with open and closed-loop structure. During the derivation of the equations

of motion a free-floating base body is assumed. The formulation is made using a set of

independent coordinates that sufficiently describe the motion of the system of interest.

The derived dynamical model is used as a framework for the remaining chapters of this

thesis.

Chapter 3 includes some of the fundamental control concepts and strategies that are

closely related to this study. It makes an overview of the concepts of reactionless manip-

ulation, methods for redundancy resolution and task priority control.

113
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Chapter 4 deals with the approaching phase of a satellite capturing operation. The

first three sections introduce the problems that need to be solved, the assumptions upon

which the study is made, and a generalization of the coupling angular momentum concept.

This generalization is stated as a theorem, referred to as the coupling wrench theorem.

It establishes a clear condition which if satisfied, the stationary state of the spacecraft

base will be maintained in the presence of external forces/torques. This condition proves

to be useful for the formulation of favorable angular momentum distributions, which if

obtained during the manipulator approaching motion, lead to certain advantages from

the viewpoint of base attitude control during the post-impact phase. Furthermore, the

coupling wrench theorem is used in Section 5.2 for the formulation of a post-impact control

law, that guarantees minimal base attitude deviation.

Section 4.4 deals with the problem of designing a reactionless path for a n DOF manip-

ulator to a point in Cartesian space. Although the discussion is made from the viewpoint

of stationary satellite capturing operation, the solution to such problem can have many

practical applications. The concept of Holonomic Distribution Control (HDC) is intro-

duced. It is pointed out that if the manipulator is controlled using HDC, simplifications

to the path planning problem can be achieved. The newly introduced control is partially

based on a strategy previously employed for solving the inverse kinematics problem for

a redundant manipulator arm by partitioning the Jacobian matrix into full rank minors.

In short, the main idea is to partition the manipulator joint variables into different sets.

Each of these sets, referred to as primitives, has a degree of redundancy one with respect

to the base attitude motion (one dimensional distribution in joint space is used). It was

pointed out that by choosing different primitives to be used during different stages of the

manipulator motion the planning process can be simplified significantly. The planning

problem that needs to be solved when holonomic distribution control is employed is a

typical nonlinear mixed-variables optimization problem. In order to find solution, a mesh

adaptive direct search algorithm is used.

Up to now, utilization of manipulator pre-impact configuration for minimizing the base

reactions, as a result of a force impulse applied at the end-effector, have been discussed

by a number of researchers (as pointed out in Chapter 1). In the case when a force

impulse (with known direction) is applied for an infinitesimally small time period, the

above approach can yield satisfactory results. However, in the case of a continuous contact

with a tumbling target satellite, where the magnitude and direction of the forces has to be

assumed unknown, obtaining a pre-impact manipulator configuration is not advantageous.

Section 4.5 deals with a tumbling target satellite capturing operation, where the idea of

the bias momentum approach (BMA) is introduced. It is based on obtaining a favorable
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angular momentum distribution in the chaser satellite before the contact with the target

object. Advantages resulting from the application of this new approach are discussed.

In addition, notes on its practical implementation are made. The problem of trajectory

planning for the end-effector to a grasping point, positioned on the target satellite (when

BMA is applied) is addressed. It should be noted that, for a general 3D manipulator

system, trajectory planning for such case, is still a challenge for the research community1.

We utilize a two step method based on the utilization of numerical optimization techniques,

which led us to satisfactory results in most of the cases studied. A discussion on the

influence of the state variables utilized for the optimization procedure, on the algorithm

convergence rate is made in Section 4.5.3. A numerical simulation using a seven DOF

manipulator is performed in order to verify the presented control strategy.

Chapter 5 is dedicated to the post-impact phase of a capturing operation. Analysis

of manipulator motions that result in maintaining the stationary state of the spacecraft’s

base in the presence of external forces is made, for this purpose we make use of the newly

formulated coupling wrench theorem in Chapter 4. The concept of distributed momentum

control (DMC) is introduced and compared with existing post-impact control strategies.

A new form of the reaction null space control (RNSC) initially introduced in [82] is pre-

sented. In Section 5.3.1 a comparison between a strategy that makes use of manipulator

post-impact control, and one that relies on gas/jet thrusters is made. It is shown that

the utilization of powerful attitude devices does not necessarily lead to achieving best per-

formance from the viewpoint of fuel consumption. Furthermore, it was pointed out that

the distributed momentum control does not use information about the mass and inertia

characteristics of the target satellite. Hence, from practical point of view its implemen-

tation is straightforward. The merit and validity of both distributed momentum control

and reaction null space control are verified by numerical simulations. It was observed that

although joint velocity minimization in the case of DMC, was performed only locally using

the pseudoinverse solution, the resultant joint velocity rates have smaller magnitude as

compared to the case when RNSC is applied.

6.2 Future work

It is my hope that this work will be helpful for further study and analysis of the problems

underlying space manipulators during a satellite capturing operation. There are still a

lot of problems and much remains to be done. Some of the possible future directions of

research are summarized below:
1Up to the knowledge of the author of this thesis.
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• In my opinion experimental work needs to be done for the practical realization of

the control algorithms proposed in this thesis. This might reveal different problems

and directions for research.

• It is interesting to consider joint flexibility in the cases when Bias Momentum Ap-

proach or the two post-impact control laws introduced is Chapter 5 are applied.

• The utilization of gripper for the impact phase is absolutely necessary. Research in

this direction could be valuable. When multi-fingered hand manipulator is used it is

necessary to study how to optimize the grasping quality by controlling the contact

trajectory. Problems related to the nonholonomic nature of the constraints that

appear in the case mentioned above will occur.

• The problem of applying impedance control in the case when the manipulator is

loaded with angular momentum is interesting.

• The utilization of dual-manipulator system for satellite capture is interesting es-

pecially from the viewpoint of trajectory planning during the approaching phase.

• The implementation of the path planning strategy presented in Chapter 4.4 for a

3D manipulator is an interesting direction of research. Furthermore, convergence

analysis is necessary2.

• As discussed in Section 4.4.1 a one dimensional distribution in joint space is always

integrable. Therefore, there should be an algebraic function that spans a smooth

one dimensional manifold (on which the manipulator motion evolves). Formulating

such an algebraic constraint can be helpful from the viewpoint of planning.

2Currently I have been dealing with this problem.
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Appendix A

Derivation of Ḃi and ḃi

See Fig. 2.2 for more information about the symbols.

kḂi =
[

0 − d
dt p̂i

0 0

]

During the differentiation the (̂·) operator will be dropped for simplicity.

− d

dt
(pi) = −(ωk × tk + ωi × si)

= −(ωk × tk + ωk × si + ui × siφ̇i)

= −(ωk × (tk + si) + ui × siφ̇i)

= −(ωk × pi + ui × siφ̇i)

hence,

kḂi =
[

0 (̂p × ωk − ui × siφ̇i)̂
0 0

]

where (̂·̂) denotes that after evaluation the expression in the brackets should be transformed

into a skew symmetric matrix.

ḃi =
[

d
dt(ui × si)

d
dt(ui)

]

d

dt
(ui) = ωk × ui (A.1)

d

dt
(ui × si) =

d

dt
(ui) × si + ui × d

dt
(si)

= (ωk × ui) × si + ui × (ωi × si)

= (ωk × ui) × si + ui × (ωk × si + ui × siφ̇i)

= (ωk × ui) × si + ui × (ωk × si) + ui × (ui × siφ̇i)
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The following term can be added to the above equation:

ωk × (ui × si) + ui × (si × ωk) + si × (ωk × ui)

Note that this term is equal to zero because for random vectors A, B and C the following

relation always holds (it is called the Jacobi identity):

A × (B × C) + B × (C × A) + C × (A × B) = 0

Canceling the equal terms with opposite signs one obtains:

d

dt
(ui × si) = ωk × (ui × si) + ui × (ui × siφ̇i) = (ωk + uiφ̇i) × (ui × si) (A.2)

Joining equations (A.1) and (A.2) results in:

ḃi =
[

(ωk + uiφ̇i) × (ui × si)
ωk × ui

]



Appendix B

Example for coordinate
partitioning

Here, an example using the Gauss Jordan elimination for extracting an independent set

of variables from a dependent one is made. Let us consider the linear system of equations

⎡
⎣ 0.75 0.63 0.75 0.54 0.62

0.76 0.06 0.76 0.48 0.07
0.80 0.63 0.80 0.44 0.51

⎤
⎦
⎡
⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

ż5

⎤
⎥⎥⎥⎥⎦ = 0 (B.1)

which is similar to the one in 2.16. Hence, the leading matrix (Az) can be considered to be

a Jacobian matrix of a system of three constraint equations with respect to five dependent

velocities ż (Az ∈ R3×5). Judging from the dimensions of Az it can be concluded that

the independent set of variables has dimension two1. In order to solve this linear system

of equations one needs to determine two entries in the vector ż and then performing the

necessary forward and backward substitutions to determine the values of the rest of the

variables. The question is “which two”? The choice should satisfy only one condition and

it is: the matrix formed by the remaining dependent variables (Ad
z) should have full rank.

By inspection it can be noted that columns one and three of Az are the same. This

implies that both ż1 and ż3 cannot be included in the set of dependent variables because

the resulting Ad
z ∈ R3×3 matrix will be rank deficient. Using the Gauss Jordan elimination

method one can easily ensure full rank of Ad
z simply by forming it from the columns of

Az containing pivots. The result from partitioning Az in (B.1) is:

Ap
z =

⎡
⎣ 1 0 1 0 −0.51

0 1 0 0 0.86
0 0 0 1 0.84

⎤
⎦ (B.2)

1Which coincides with the dimension of the null space of �z.
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with pivots in columns one, two and four. These columns form a unit matrix. Hence, once

the independent variables ż3 and ż5 are specified the calculation of the dependent ones is

straightforward. Mathematically matrix Ap
z can be written as:

Ap
z =

[
Ad

z Ai
z

]
(B.3)

where Ad
z contains columns one, two and four of Ap

z, and Ai
z includes the remaining ones.

Rewriting equation (B.1) using the partitioned form one obtains:

[
Ad

z Ai
z

] [ żd

żi

]
= 0 (B.4)

żd =

⎡
⎣ ż1

ż2

ż4

⎤
⎦ żi =

[
ż3

ż5

]

Solving B.4 for żd results in:

żd = −Ad−1
z Ai

zż
i (B.5)

Hence, the matrix R that relates ż and żi is defined as:

R =
[ −Ad−1

z Ai
z

E2

]
(B.6)

where E2 ∈ R2×2 is a unit matrix.

Since the Gauss Jordan elimination guarantees that the components of Ad
z form a unit

matrix the above equations becomes:

R =
[ −Ai

z

E2

]
(B.7)

The numerical result for R is:

R =

⎡
⎢⎢⎢⎢⎣

−1 0.51
0 −0.86
1 0
0 −0.84
0 1

⎤
⎥⎥⎥⎥⎦ (B.8)

Note that the unit matrix E2 is formed by rows 3 and 5 of R. Respectively −Ai
z contains

the first, second and fourth one.



Appendix C

Momentum conservation equation

Here, a general form of the momentum conservation equation for a free-floating robotic

system is derived. It is a fundamental tool for the control of space manipulators and is

extensively used through the thesis. It can give a direct relation between the manipulator

and base motions which proves to be useful in many cases. Furthermore, since the momen-

tum conservation equation is simpler compared to the equation of motion, its utilization

for the development of computationally uninvolved control strategies is indispensable (see

Section 5.2).

The variables used in the derivation are defined as follows (all of them are expressed

in the inertial frame Σi);

mi, Ii - mass and inertia of body i,

ri - position of the centroid of body i,

vi - linear velocity of the centroid of body i,

ωi - angular velocity of body i.

Variables with index i = 0 refer to the base body (Fig. C.1). The translational and

rotational parts of the Jacobian matrices Jm and bJm (see Section 2.4.1) will be denoted

as follows:

J i
m ∈ R6×n =

[
JT i

JRi

]
(i = 1, 2, .., n) (C.1)

bJm ∈ R6×n =
[

JT0

JR0

]
= 0 (C.2)

A) First the linear momentum P will be considered:

P =
n∑

i=0

mivi
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Using (2.26) the above equation becomes:

P =
n∑

i=0

mi(v0 + ω0 × (ri − r0) + JT iφ̇)

=

(
n∑

i=0

mi

)
v0 + ω0 ×

(
n∑

i=0

miri

)
−
(

n∑
i=0

mi

)
ω0 × r0 +

(
n∑

i=0

miJT i

)
φ̇

= wv0 + ω0 × wrg − wω0 × r0 + JTgφ̇

= wv0 + wω0 × r0g + JTgφ̇ (C.3)

where
n∑

i=0

mi = w
n∑

i=0

miri = wrg r0g = rg − r0

JTg =
n∑

i=1

miJT i (C.4)

The term JTgφ̇ represents the linear momentum of the center of mass of the manipulator

(without base) as seen from the coordinate frame fixed in the base body.

B) Angular momentum L around the origin of the inertial frame:

L =
n∑

i=0

(Iiωi + ri × mivi)

Using (2.25) and (2.26) the above equation becomes:

L =
n∑

i=0

[
Ii(ω0 + JRiφ̇) + ri × mi(v0 + ω0 × (ri − r0) + JT iφ̇)

]

=

(
n∑

i=0

I i

)
ω0 +

(
n∑

i=0

IiJRi

)
φ̇ +

(
n∑

i=0

miri

)
× v0

−
n∑

i=0

miri × [(ri − r0) × ω0] +

(
n∑

i=0

miri × JT i

)
φ̇ (C.5)

substituting r0i = ri − r0, and noting that r00 = 0, JT0 ∈ R3×n = 0 and JR0 ∈ R3×n = 0

one obtains:

L = wrg × v0 +

[
n∑

i=1

(Ii − mir̂ir̂0i) + I0

]
ω0 +

n∑
i=1

(IiJRi + mir̂iJT i)φ̇

= wrg × v0 + Iwω0 + Iφφ̇ (C.6)

where (̂·) stands for a skew-symmetric representation of a three dimensional vector. Joining

equations (C.3) and (C.6) leads to:[
P
L

]
=
[

wE3 wr̂T
0g

wr̂g Iw

] [
v0

ω0

]
+
[

JTg

Iφ

]
φ̇ (C.7)
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Figure C.1: Angular momentum expressed around different points. r0 and rg stand for
the vectors from the inertial frame to the base and center of mass of the entire system,
respectively.

where

Iω =
n∑

i=1

(Ii − mir̂ir̂0i) + I0

Iφ =
n∑

i=1

(IiJRi + mir̂iJT i)φ̇

As already mentioned, equation (C.6) is the angular momentum of the system around

the origin of Σi. From practical point of view, it is convenient to express it around the

centroid of the base body (Fig. C.1).

B) Angular momentum L0 around the centroid of the base:

P 0 = P

L0 = L − r0 × P (C.8)

The product r0 × P becomes:

r0 × P = wr0 × v0 −
n∑

i=1

mir0 × [(ri − r0) × ω0] +

(
n∑

i=1

mir0 × JT i

)
φ̇ (C.9)
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Substituting (C.9) in (C.8) one obtains:

L0 = L − r0 × P = w(rg − r0) × v0 +

(
n∑

i=0

Ii

)
ω0

+
n∑

i=1

mi(r0 − ri) × [(ri − r0) × ω0] +

(
n∑

i=1

IiJRi

)
φ̇ +

(
n∑

i=1

mi(ri − r0) × JT i

)
φ̇

= wr̂0gv0 +

[
n∑

i=1

(Ii + mir̂
T
0ir̂0i) + I0

]
ω0 +

n∑
i=1

(IiJRi + mir̂0iJT i)φ̇ (C.10)

Joining equations (C.3) and (C.10) leads to:[
P 0

L0

]
=
[

wE3 wr̂T
0g

wr̂0g Hw

] [
v0

ω0

]
+
[

JTg

Hωφ

]
φ̇ (C.11)

where

Hω =
n∑

i=1

(Ii + mir̂
T
0ir̂0i) + I0 (C.12)

Hωφ =
n∑

i=1

(IiJRi + mir̂0iJT i) (C.13)

Note that equation (C.12) is nothing else but the parallel axis theorem and the vector

Hωφφ̇ is the angular momentum of the manipulator as seen from the coordinate frame

fixed in the base body. Using the newly obtained inertia matrices Hω and Hωφ the

expressions for P and L become:[
P
L

]
=
[

wE3 wr̂T
0g

wr̂0g Hw

] [
v0

ω0

]
+
[

JTg

Hωφ

]
φ̇ +

[
0

r0 × P

]
(C.14)

and using

Hb ∈ R6×6 =
[

wE3 wr̂T
0g

wr̂0g Hw

]
(C.15)

Hc ∈ R6×n =
[

JTg

Hωφ

]
(C.16)

equation (C.14) can be expressed as:[
P
L

]
= Hb

[
v0

ω0

]
+ Hcφ̇ +

[
0

r0 × P

]
(C.17)

Equation (C.17) is just a different form of (C.7), nevertheless it is more convenient

because the angular momentum resulting from P is expressed in a separate term.

In many practical cases only the angular velocity of the base is of particular interest.

Equation (C.17) can be reformulated explicitly only with respect to ω0 as follows:
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P = wE3v0 + wr̂T
0gω0 + JTgφ̇

L = wr̂0gv0 + Hwω0 + Hωφφ̇ + r0 × P

v0 can be canceled out by pre-multiplication of the upper equation with r̂0g and then

subtracting it from the lower one. This operation leads to:

L − r̂0gP = (Hw − wr̂0gr̂
T
0g)ω0 + (Hωφ − r̂0gJTg)φ̇ + r0 × P

denoting H̃b = Hw − wr̂0gr̂
T
0g and H̃c = Hωφ − r̂0gJTg leads to:

L = H̃bω0 + H̃cφ̇ + rg × P (C.18)

In [81] the term Hcφ̇ is called the coupling momentum and in [82] the term H̃cφ̇ is

referred to as the coupling angular momentum. L = Hcφ̇ consists of both linear and

angular part (LP and LL), nevertheless it should be noted that LL �= H̃cφ̇ because the

latter one is expressed around the mass center of the system while the former one around

the centroid of the base.





Appendix D

Components of the inertia matrix
H

Here the general structure of the inertia matrix H will be shown. H appears in the

dynamical formulation for manipulators with tree structure (see Section 2.4.1).

The best way to reveal the components of H is by example. Next, a n DOF manipula-

tor attached to a free-floating base body will be considered. In Section 2.4.1 it was shown

that for such case H can be expressed as:

H = RoT MRo (D.1)

or

H =
[

bJT
b JT

b
bJT

m JT
m

] [
M 0 0
0 Mm

] [
bJ b

bJm

J b Jm

]
(D.2)

where the main diagonal of Mm ∈ R6n×6n contains the mass and inertia matrices of the

manipulator (see Section 2.4). Considering that bJ b = E6 and bJm = 0 ∈ R6×n, after

multiplication (D.2) becomes:

H =
[

M0 + JT
b MmJ b JT

b MmJm

JT
mMmJ b JT

mMmJm

]
(D.3)

The four components of the above equation have clear physical meaning. Each of them

will be considered next:

A) By inspection it can be verified that the term M0 + JT
b MmJ b corresponds to the

matrix Hb derived in Appendix C equation (C.15). It is called the global inertia matrix

of the base1.
1Often global will be dropped for simplicity, since usually from the context the reader can make a

distinction weather �0 of �b is being referred (�0 is the moment of inertia of the base body around its
center of mass expressed in the inertial frame).

141



142 Appendix D Components of the inertia matrix H

B) The term JT
b MmJm is the transposed of JT

mMmJ b
2 and represents the coupling

inertia matrix between the base and the manipulator. By inspection it can be verified

that it is equivalent to Hc derived in Appendix C equation (C.16).

C) The term Hφ = JT
mMmJm represents the global inertia matrix of the manipulator.

For example if the number of manipulator joints is n = 2 then the structure of Hφ is as

follows:

Hφ =
[
JT

T1 JT
R1 JT

T2 JT
R2

]
⎡
⎢⎢⎣

m1E3 0 0 0
0 I1 0 0
0 0 m2E3 0
0 0 0 I2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

JT1

JR1

JT2

JR2

⎤
⎥⎥⎦

where the translational and rotational parts of Jm have been denoted as:

J i
m ∈ R6×n =

[
JT i

JRi

]
(i = 1, 2)

After multiplication Hφ becomes:

Hφ = m1J
T
T1JT1 + JT

R1I1JR1 + m2J
T
T2JT2 + JT

R2I2JR2 (D.4)

Rewriting (D.3) using the newly introduced symbols leads to:

H =
[

Hb Hc

HT
c Hφ

]
(D.5)

where Hb ∈ R6×6, Hc ∈ R6×n and Hφ ∈ Rn×n. Substituting Hb and Hc with the

expressions derived in Appendix C gives:

H =

⎡
⎢⎢⎣

wE3 wr̂0g
T JTg

wr̂0g Hω Hωφ

JT
Tg HT

ωφ Hφ

⎤
⎥⎥⎦ (D.6)

The inertia matrix H is symmetric, positive-definite and configuration dependent. Its

components Hb(xb, φ) and Hc(xb, φ) in general depend on both the base position and

orientation as well as manipulator configuration. Hφ(φ) however, depends only from the

manipulator variables. This can be proved by inspecting its components in (D.4). For

simplicity let us consider only the first one:

Hφ1 = m1J
T
T1JT1 + JT

R1I1JR1 (D.7)

using the latter term of equation (2.27), (D.7) becomes (see Fig. 2.2):

Hφ1 = m1(u1 × s1)T (u1 × s1) + uT
1 I1u1 (D.8)

2Since�m is a symmetric matrix it is equal to its transpose. For more information on mass distribution
see [22], [4].
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all components from the above equation are expressed with respect to the inertial frame.

It can be rewritten in the following form:

Hφ1 = m1(iA1u
1
1 × iA1s

1
1)

T (iA1u
1
1 × iA1s

1
1) + (iA1u

1
1)

T iA1 I1
1

iAT
1 (iA1 u1

1)

= m1 [(u1
1 × s1

1)
T iAT

1 ] [iA1 (u1
1 × s1

1)] + (u1T
1

iAT
1 ) iA1 I1

1
iAT

1 (iA1 u1
1)

= m1 (u1
1 × s1

1)
T (u1

1 × s1
1) + u1T

1 I1
1 u1

1

where iA1 is a rotational matrix that relates the coordinate system Σ1 fixed in the 1th

body to the inertial frame (iAT
1

iA1 = E3), and superscript (·)1 means that the variable

is expressed in Σ1.





Appendix E

Reduced equation of motion

With reduced form of the equations of motion, we imply a set of equations that account

implicitly for some of the state variables: ω̇b, v̇b or φ̈. For example, equation (4.4) was

formulated with respect to the joint accelerations φ̈ and the base angular acceleration

ω̇b, by eliminating v̇b from equation (3.1). For convenience (3.1) will be rewritten in the

following form:⎡
⎢⎢⎣

wE wr̂bg
T JTg

wr̂bg Hω Hωφ

JT
Tg HT

ωφ Hφ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

v̇b

ω̇b

φ̈

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

cv
b

cω
b

cφ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

0

τ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

JvT
bh

JωT
bh

JT
φh

⎤
⎥⎥⎦Fh (E.1)

where for simplicity only external wrenches acting at the tip of the end-effector (Fh) are

considered. J bh and Jφh are Jacobian matrices of the end-effector with respect to the

motion of the base and manipulator plus reaction wheels, respectively1. Solving the first

(upper) equation of (E.1) and substituting into the lower two equations results in:⎡
⎢⎢⎣

H̃b H̃bm H̃br

H̃
T
bm H̃m 0

H̃
T
br 0 H̃r

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ω̇b

φ̈m

φ̈r

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

c̃b

c̃m

c̃r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

τm

τ r

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

J̃
T
bh

J̃
T
mh

J̃
T
rh

⎤
⎥⎥⎦Fh (E.2)

where

H̃b = Hω − wr̂bgr̂
T
bg ∈ R3×3

H̃c =
[
H̃bm H̃br

]
= Hωφ − r̂bgJTg ∈ R3×n

H̃φ =
[

H̃m 0
0 H̃r

]
= Hφ − 1

w
JT

TgJTg ∈ Rn×n

1Superscripts v and ω represent the part of a matrix corresponding to the base linear and angular
motion, respectively.
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c̃b = cω
b − r̂bgc

v
b

c̃φ =
[

c̃m

c̃r

]
= cφ − 1

w
JT

Tgc
v
b

J̃
T
bh = JωT

bh − r̂bgJ
vT
bh

J̃
T
φh =

[
J̃

T
mh

J̃
T
rh

]
= JT

φh − 1
w

JT
TgJ

vT
b

where subscripts m and r denote variables of the manipulator and reaction wheels, re-

spectively. The symbols undefined here, can be found in Appendix C.

Using a similar approach as above, the base angular accelerations ω̇b in (E.2) can be

eliminated as well, to obtain the following equation of motion:

Hg
φφ̈ + cg = τ + JgT

φhFh (E.3)

Equation (E.3) is defined explicitly only with respect to the manipulator joint variables.

It can be considered as a generalization of the fixed-base manipulator equation of motion,

where the new matrices are defined as follows:

Hg
φ = Hφ − HT

c H−1
b Hc

cg = cφ − HT
c H−1

b cb

JgT
φh = JT

φh − HT
c H−1

b JT
bh

In [112], the matrix Jg
φh = Jφh − J bhH−1

b Hc (note that Hb is symmetric) is referred

to as generalized Jacobian matrix. It becomes identical to Jφh if the mass and inertia

characteristics of the base body are infinitely big (which corresponds to the case of a fixed-

base manipulator). By analogy the matrices Hg
φ and cg can be referred to as generalized

inertia matrix and generalized nonlinear term, respectively.

An alternative way to derive the generalized Jacobian matrix is by using the following

system of equations (see Appendix C (C.17)2):

[
P
L

]
= Hb

[
vb

ωb

]
+ Hcφ̇ +

[
0

rb × P

]
(E.4)

[
vh

ωh

]
= J bh

[
vb

ωb

]
+ Jφhφ̇ (E.5)

2For consistency subscript 0 will be interchanged with b.
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where vh and ωh are the linear and angular velocities of the end-effector. Expressing vb

and ωb from (E.4) and substituting them in (E.5) leads to:[
vh

ωh

]
= Jg

φhφ̇ + J bhH−1
b

[
P

L − rb × P

]
(E.6)

The latter term of (E.6) is equal to zero if P and L are zero. Solving for φ̇ leads to:

φ̇ = Jg+
φh

([
vh

ωh

]
− J bhH−1

b

[
P

L − rb × P

])
+ (E − Jg+

φhJg
φh)ξ̇ (E.7)

Even if the base body undergoes translational and rotational motion, and the momentum

of the system is different from zero, by using (E.7) a desired end-effector velocity can be

obtained. For more details about the solution of (E.6) see Section 3.1.1.





Appendix F

Parameters of the manipulators
used

Here, the parameters of the two manipulator systems used in the numerical simulations

are included.

F.1 3D 7 DOF manipulator

In the bigger part of the simulation results presented, a 7 DOF manipulator mounted on a

free-floating base is used. All links are connected through rotational joints. The structure

of the manipulator is depicted in Fig. F.1. Each joint is depicted by a blue circle and

each link is represented by its centroid. The geometrical structure of the manipulator is

in Table F.1. It includes information about the distance from the centroid of each link to

the input and output joints. Ji stands for Joint i, (i = 0, 1, 2, ..., n) where n = p + 3, p = 7

and 3 represents the three reaction wheels (RW) (Link 0 is the base body). The output of

Link 7 is the end-effector (EE). All distances are expressed in the coordinate system fixed

in Link i. The mass and inertia characteristics of the system are in Table F.2. Finally the

relative orientation of the coordinate system fixed in joint i and the one fixed in the input

joint for the parent body1 of joint i is given in Table F.3. Note that the Z axis is the joint

axis of rotation depicted by a dotted line in Fig. F.1.

The characteristics of the target satellite used are;

mass = 200 kg;

principal moments of inertia = [150, 150, 150] [kgm2].

1If i is an output joint for body k, body k is the parent of joint i.
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Figure F.1: 3D 7DOF manipulator

Figure F.2: 2D 6DOF dual-arm
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Table F.1: 7DOF Manipulator - kinematical structure.

Joint IN [x,y,z] (m) Joint OUT [x,y,z] (m)
Link 1 [0, 0, -0.175] (J1) [0, 0, 0.175] (J2)
Link 2 [0, 0, -0.2] (J2) [0, 0.275, 0.2] (J3)
Link 3 [0, 0.435, 0] (J3) [0, -0.435, 0] (J4)
Link 4 [0, 0.315, 0.275] (J4) [0, -0.315, 0] (J5)
Link 5 [0, 0, 0.18] (J5) [0, 0, -0.18] (J6)
Link 6 [0, -0.2750, -0.16] (J6) [0, 0.2750, 0] (J7)
Link 7 [0, -0.266, -0.2] (J7) [0, 0.266, 0] (EE)
Link 0 - [0.65, 0, 0.75] (J1)
Link 0 - [1, 0, 0] (J8) RWx

Link 0 - [0, -1, 0] (J9) RWy

Link 0 - [0, 0, -0.75] (J10) RWz

Table F.2: 7DOF Manipulator - mass and inertia parameters.

Ixx(kgm2) Iyy Izz Ixy Ixz Iyz mass(kg)
Link 0 1200.00 1200.00 1200.00 0 0 0 1000.00
Link 1 1.22 0.51 1.33 -0.07309 0.00071 0.1132 35.01
Link 2 2.10 1.38 2.36 0 -0.00214 0 30.00
Link 3 0.10 3.38 3.36 0 -0.00214 0 22.69
Link 4 0.43 2.27 1.91 0 -0.6328 0 21.38
Link 5 0.39 0.40 0.07 0 0.01675 0 16.75
Link 6 0.57 0.60 0.13 0 -0.2313 0 26.17
Link 7 0.17 0.24 0.14 0.000781 -0.0145 -0.000137 18.07
RWx 0.10 0.10 0.10 0 0 0 1.00
RWy 0.10 0.10 0.10 0 0 0 1.00
RWz 0.10 0.10 0.10 0 0 0 1.00

Table F.3: 7DOF Manipulator - Axis of rotation of each joint.

J1 [deg] J2 J3 J4 J5 J6 J7 J8 J9 J10

X 0 0 -90 0 0 -90 0 0 -90 0
Y 0 90 0 0 0 0 90 90 0 0
Z 0 0 -90 0 0 0 0 0 0 0
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F.2 Planar 6 DOF dual-arm system

In Section 5.4 a planar manipulator system with two robotic arms (each 3 DOF) mounted

on a free-floating base is used. Their structure is depicted in Fig. F.2. The geometry as

well as mass and inertia characteristics of the system are in Tables F.4 and F.5.

Table F.4: 6DOF Manipulator - kinematical structure.

Joint IN [x,y,z] (m) Joint OUT [x,y,z] (m)
Link 1 [-0.5, 0, 0] (J1) [0.5, 0, 0] (J2)
Link 2 [-0.5, 0, 0] (J2) [0.5, 0, 0] (J3)
Link 3 [-0.5, 0, 0] (J3) [0.5, 0, 0] (EE)
Link 4 [0.5, 0, 0] (J4) [-0.5, 0, 0] (J5)
Link 5 [0.5, 0, 0] (J5) [-0.5, 0, 0] (J6)
Link 6 [0.5, 0, 0] (J6) [-0.5, 0, 0] (EE)
Link 0 - [0.5, 0, 0] (J1)
Link 0 - [-0.5, 0, 0] (J4)

Table F.5: 6DOF Manipulator - mass and inertia parameters.

Ixx(kgm2) Iyy Izz Ixy Ixz Iyz mass(kg)
Link 0 1250.00 1250.00 1250.00 0 0 0 1000.00
Link 1 33 33 33 0 0 0 100
Link 2 33 33 33 0 0 0 100
Link 3 33 33 33 0 0 0 100
Link 4 33 33 33 0 0 0 100
Link 5 33 33 33 0 0 0 100
Link 6 33 33 33 0 0 0 100
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