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Abstract—This work deals with the problem of parameter
estimation of dynamical systems intended to model demonstrated
motion profiles for a system of interest. The regression problem
is formulated as a constrained nonlinear least squares problem.
We present an approach that extends the concept of dynamical
movement primitives to account for multiple demonstrations of a
motion. We maintain an implicit dynamical system that resembles
the demonstrated trajectories in a locally optimal way. This
is achieved by solving a quadratic program (that encodes our
notion of resemblance) at each sampling time step. Our method
guarantees predictable state evolution even in regions of the state
space not covered by the demonstrations.

I. INTRODUCTION

Parameter estimation1 of dynamical systems is a fundamen-
tal problem in the context of processes where a mathematical
model and corresponding experimental data are available. In
robotic applications, like planning of reaching and grasping
motions, the process of interest is the desired evolution of
the state of a mechanical system (e.g., a robotic gripper). To
facilitate automatic planning schemes, data is often collected in
form of demonstrations provided by a human expert. The goal
is to generate “appropriate” motion patterns for the mechanical
system (given a set of boundary conditions). In the frame-
work of imitation learning, also referred to as Programming
by Demonstration, the demonstrations are used to specify a
desired transition from a given initial to a given final state in
an intuitive way [2].

In the above context, mathematical models are selected
based on their ability to generalize over multiple demon-
strations while guaranteeing certain structural properties, and
their potential to express coupling between the dynamics of
different subsystems. Also, in order to facilitate the parameter
estimation problem, simple models are often preferred.

On one hand, the use of Dynamical Systems (DS) for
modeling of state transitions is beneficial compared to spline-
based methods [3], [4], because a DS constitutes a policy
over the state space and thus provides robustness to pertur-
bations occurring during motion execution. On the other hand,
choosing an appropriate policy (i.e., dynamical system) might
be problematic in light of the fact that usually the provided

1Also commonly referred to as parameter identification, nonlinear regression
or data fitting [1].

Fig. 1. Shadow Robot platform: The platform utilized in the test runs in
Section IV-B comprises a 4 DoF arm and a hand with 20 actuated DoF.

demonstrations are relatively sparse. Hence, it might happen
that the behavior of the DS in “unexplored” parts of the
state space is unexpected/undesirable. A classical approach
for dealing with this problem is to enforce certain structural
properties of the DS such as Global Asymptotic Stability
(GAS), ensuring that the state is guaranteed to (at least)
converge to the global equilibrium point. One shortcoming of
such an approach is that it does not state any preference about
the behavior of the system in relation to the demonstrations.

This paper originates from efforts related to
modeling/generation of grasping movements, based on a
taxonomy of grasps [5], for the anthropomorphic Shadow
Hand robotic platform [6], which is shown in Fig. 1. Including
the two wrist joints, the hand comprises 20 controlled Degrees
of Freedom (DoF). Even under consideration of possible
dimensionality reduction techniques [7], [8], this requires a
model capable of dealing with a substantial number of DoF.
Another desideratum is the ability to incorporate multiple
demonstrations since, even for the same grasp type, grasping
motions can exhibit fundamentally different dynamics (e.g.,
when starting the movement from an open and closed hand
configuration). In this work we suggest an approach using
a dynamical system described by Ordinary Differential
Equations (ODE) to encode demonstrations provided by a
user. The method incorporates the concept of Dynamical
Movement Primitives (DMP) which was proposed by Ijspeert
et. al. [9]. The contributions of this work are three-fold:
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(i) In our approach, the DMP parameter estimation is
formulated as a nonlinear optimization problem (instead of the
usually used linear approximation) which reduces the number
of parameters necessary to achieve a good fit to the provided
demonstrations.

(ii) We extend the DMP concept to learning of separate
DS corresponding to multiple demonstrations which allows to
better capture a motion’s actual underlying dynamics.

(iii) For real-time motion generation and control, we
formulate a combination of the learned DS to generate a new
implicit system which ensures predictable behavior over the
state space. Opposed to the usage of explicit DS as in related
works [9], [10], [11], [12], our formulation leaves room for
online optimization and can be extended to include spatial and
temporal constraints to account for additional considerations
such as obstacle avoidance.

The remaining article is structured as follows: below, we
briefly review related work before we introduce our DMP
formulation in Section II. In Section III we suggest a method
to combine multiple DS online in order to generalize over
multiple demonstrations. Next, we use simulations and test
runs with a robotic hand to evaluate the proposed approach.
The conclusions are drawn in Section V.

A. Related work

Dynamical systems have become a popular framework for
encoding motions. In the DMP framework, the underlying
DS (usually referred to as the transformation system) consists
of a predefined stable linear DS which is modulated by a
nonlinear forcing function that decays over time ensuring GAS.
Arbitrarily many DoF can be synchronized via a phase variable
(whose evolution is governed by the so called canonical sys-
tem) which acts as a substitute of time. The learning problem
is usually solved by fixing the nonlinear parameters of the
forcing function and fitting only the linear parameters with
Locally Weighted Regression (LWR). The DMP framework
(see [13] for a recent review) can be used to generate point-
to-point motions as well as periodic movements and lends
itself well to reinforcement learning techniques [14], [15], [16].
Although DMP offer a compact way of capturing the dynamics
of a single demonstration, the actual underlying dynamics can
differ substantially in regions of the state space not covered
by this demonstration. Hence, it is desirable to account for
multiple different demonstrations to increase generalization.

Most works in this direction are based on statistical
learning techniques. In [17], a statistical movement represen-
tation using Gaussian Mixture Regression is proposed. Gri-
bovskaya et. al. [18] define a locally stable DS via a probabilis-
tic representation of the demonstrations as a Gaussian Mixture
Model (GMM). Their system is time-independent which, de-
pending on the application, can increase robustness in the
presence of temporal perturbations. Furthermore, only one DS
is learned which potentially allows to capture coupling effects
between different DoF. Extending the work in [18], Khansari-
Zadeh et. al. [11] introduce the Stable Estimator of Dynamical
Systems (SEDS) approach. Here, the parameters of the GMM
are estimated by solving a Nonlinear Programming Problem
(NLP). As in [18], SEDS learns a single time-independent
coupled DS with additional constraints guaranteeing that the

system is GAS. However, as stated by the authors in [11], with
increasing number of DoF the learning problem can become
intractable. Also, since the behavior of the DS in regions of
the state space not covered by demonstrations depends on the
specific parameters of the underlying GMM, there is no direct
way of predicting the resulting state evolution.

Stulp et. al. [19] encode movement task variations, such
as avoidance behaviors, using DMP learned from demonstra-
tions with obstacles present in the demonstration scenario.
In [10], Ude et. al. suggest to keep multiple demonstrated
trajectories in memory and to synthesize new DMP using
LWR in order to compute local models. This approach was
extended in [12] to make it feasible for on-line computation
by directly representing demonstrations as DMP and utilizing
Gaussian Process Regression to compute new DMP parameters
depending on a given desired goal point. Similarly, in [20]
striking movements for table tennis are learned by mixing
DMP via a gating network.

B. Nomenclature
τ duration of a motion,
M number of point samples in a trajectory,
D number of provided demonstrations,
N number of basis functions parametrizing a DS,
F number of controlled DoF.

Bold letters are used to denote matrices and vectors. The k-th
element of a vector z is denoted by zk.

II. LEARNING DYNAMICAL MOVEMENT PRIMITIVES

A. Assumptions & problem description

Our goal is to learn movement primitives by fitting the pa-
rameters of dynamical systems, described as a set of ODE with
a single global attractor point, to experimental data provided
in form of multiple demonstrated point-to-point trajectories
in either joint- or task space. The state evolution of these
dynamical systems, obtained by integrating from a given initial
state, describes motion profiles which then can be converted
to motor commands for the targeted platform by a low-level
tracking controller. Important requirements are the ability to
account for inherently different dynamics in the demonstrations
and ensuring predictable behavior in regions of the state space
which were not covered by the demonstrations. Also, a model
structure not suffering from the curse of dimensionality is
necessary, since we aim at platforms with a substantial number
of DoF.

For convenience and without loss of generality, all defini-
tions regarding dynamical systems and their respective states
are stated under the assumption of an implicit change of
variable, such that the equilibrium point of the considered
system is at the origin [21]. A demonstrated point-to-point
trajectory is given as position, velocity and acceleration vectors
q̄, ˙̄q, ¨̄q ∈ RM sampled at M (m = 1, . . . ,M ) discrete
points in time. The trajectory is rescaled on a time interval
between zero and one, i.e., t̄m ∈ [0, 1] ∀m, in order to make
different trajectories comparable. In accordance with the above
assumption regarding the change of variable, the trajectory is
shifted to converge at the origin, i.e., q̄M = 0. For simplicity
of notation we assume that each trajectory is sampled with



Fig. 2. Gaussian basis functions: Shown are N = 5 basis functions Ψn

obtained via solving (4) for the demonstration in Fig. 3. The widths decrease
with the distance to s = 1 according to the constraint σn ≤ σ̂(1−cn) in (4),
ensuring negligible magnitudes of u for s > 1

the same number M of points, although this is not an explicit
requirement of the introduced method.

B. Encoding a single demonstration

The motion of one DoF, corresponding to a given demon-
stration, is encoded in a DS formulated as the ODE

ẋ = Φ(x(t), s(t);w,p)

depending on parameters w and p, the state x(t) ∈ R2, and
a phase variable s(t) ∈ R. The phase variable provides a
convenient way to scale time in order to modify the duration of
the resulting motion. Its evolution is governed by the following
simple dynamics

ds

dt
= ṡ = 1/τ, (1)

where the scalar constant τ determines the movement’s dura-
tion. The DS, together with the phase variable driving it consti-
tutes a DMP. Synchronized motions across multiple DoF, each
of which associated with a separate DS, are achieved by using
a common phase variable s(t). A DS consists of a linear mass-
spring-damper excited by a nonlinear input u(s) ∈ R which is
often referred to as a forcing function. As in [9], we choose to
represent the forcing function as a weighted sum of N Gaus-
sian basis functions with weights w = (w1, . . . , wN ) ∈ RN ,
respective centers cn ∈ [0, 1] and widths σn which are
collected in the vector p = (c1, σ1, . . . , cN , σN ) ∈ R2N . The
system Φ(x(t), s(t);w,p) is given by[

q̇
q̈

]
︸︷︷︸
ẋ

=

[
0 1

a/τ2 b/τ

]
︸ ︷︷ ︸

A

[
q
q̇

]
︸︷︷︸
x

+

[
0

1/τ2

]
︸ ︷︷ ︸
B

u(s) (2)

u(s) =

N∑
n=1

Ψn(s; cn, σn)ωn, (3)

where the parameters a and b are predefined such that critical
damping is enforced and Ψn = exp

(
−0.5(s− cn)2/σ2

n)
)
,∀n.

In the original DMP framework [9], the phase variable s is
governed by converging dynamics and used to scale the inputs
u in order to guarantee GAS. In our formulation this is not

Fig. 3. Comparison of parameter estimation methods: Shown is the reproduc-
tion ability of the DS in (2), parametrized by solving (4), compared to a DS
using equidistantly spaced basis functions and uniform basis function widths.
The result was generated by integrating the respective systems from the initial
state x̄(0) of the demonstration. The demonstration q̄(t) is denoted in pink,
the dashed black line represents the position curve q(t) yielded by our DS, the
dashed magenta line shows the result obtained from the DS with predefined
nonlinear parameters p (q̃(t) was generated with the code accompanying [9]).
In both cases, N = 5 basis functions were used.

required since we compute the parameters of the DS by solving
an optimization problem in which we enforce appropriate
constraints to ensure GAS as shown in Section II-C.

To generate a motion, s is reset to zero and the DS in (2)
is integrated from the given initial state. When s reaches one,
the forcing terms u become negligible. The time evolution
of the phase variable, and thus the movement duration, is
governed by τ . Our choice of the system in (1) governing
the evolution of the phase variable was made for simplicity.
The use of alternative canonical systems is possible but would
not qualitatively change the results.

C. Learning DS via nonlinear programming

Learning a DMP amounts to estimating the parameters w
and p of the forcing function u(s) in (3). This is a nonlinear
problem which is usually tackled by fixing the nonlinear
parameters in p according to some heuristics (e.g., uniform
Gaussian widths σn and equidistantly spaced centers cn). Here,
in a first step, we formulate a NLP in order to fit the parameters
for a single system Φ(x, s;w,p) to a provided demonstration.
The goal is to learn forcing terms u such that the system resem-
bles the dynamics of the demonstration. This is achieved by
minimizing the L2 norm of the acceleration residual between
the demonstrated data and the output generated by the model.
The corresponding constrained nonlinear least squares problem
is given below2

minimize
w,p

M∑
m=1

[CΦ (x̄m, s̄m;w,p)− ¨̄qm]
2 (4)

subject to (5)
σn ≤ σ̂(1− cn), n = 1, . . . , N

0 ≤ cj ≤ 1, n = 1, . . . , N

∆cn ≤ cn − cn−1, n = 2, . . . , N,

2This problem is not convex and thus, in general, only a local minimizer
will be found.



where x̄m = (q̄m, ˙̄qm) and s̄m = t̄m due to the time scaling
of the demonstrations as stated in Section II-A. C = [0, 1] is a
selection matrix and ∆c : 0 ≤ ∆c ≤ 1/N is a constant limiting
the minimum distance between the centers of basis functions
in order to prevent overlapping. The scalar ε : 0 < ε� 1 can
be used to arbitrary limit the value of the basis functions at
the end of the interval s ∈ [0, 1], i.e., Ψn(1) ≤ ε,∀n, which
ensures GAS. To this end, σ̂ =

√
−0.5/log(ε) is computed as

the width of a basis function centered at cn = 0. To provide the
solver with a feasible initial guess, the problem above is solved
with fixed basis functions centers and widths which reduces (4)
to a Quadratic Programming (QP) problem. Here, the N initial
centers c̃n are equidistantly spaced on the interval s ∈ [0, 1]
and the associated widths are located on the corresponding
constraint in (5) such that σ̃n = σ̂(1− c̃n),∀n.

An example of the parameters p obtained by solving (4)
is shown in Fig. 2. The corresponding demonstration, along
with a comparison to a solution generated with heuristically
fixed nonlinear parameters is depicted in Fig. 3. Evidently, by
including the nonlinear parameters p in the decision variables,
a better fit can be obtained.

D. Encoding multiple demonstrations

In the next step, the goal is to fit (for one DoF) the forcing
terms of D dynamical systems to D provided demonstrations
such that the d-th DS encodes the dynamics in the vicinity of
the d-th demonstration. One could simply use the NLP in (4)
to identify w ∈ RN and p ∈ R2N separately for each DS
which would amount to estimate 3DN parameters. Instead,
we reformulate (4) such that the nonlinear basis function
parameters p are shared among the D dynamical systems while
the d-th DS has associated linear parameters wd. The objective
function becomes

minimize
w1,...,wd,p

D∑
d=1

{
M∑
m=1

[CΦd (x̄dm , s̄m;wd,p)− ¨̄qdm ]
2

}
(6)

and the problem is subjected to the constraints in (5). The
above formulation allows a fit with N(D+ 2) parameters and
was used for the evaluation in Section IV.

III. REAL-TIME CONTROL WITH MOVEMENT PRIMITIVES

In this section we discuss how to use the previously
learned DS (each of which corresponds to a demonstration)
for motion generation and control. Let xd[k] denote the state
at time tk obtained by integrating Φd(xd, s) from t = t1
to t = tk starting from x̄d(0) (i.e., from the initial state
of the d-th demonstration). Our approach makes dual use
of the dynamical systems. First, the set of reference states
R[k] = {x1[k], . . . ,xD[k]} provides, at each time tk, a
representation of the corresponding demonstration encoded
in Φd(xd, s). Second, we formulate a movement primitive
comprising a new DS where the forcing term is formed as a
convex combination of individual inputs ud[k] corresponding
to the systems Φd(xd, s)

ẋ[k] = Ax[k] +B

D∑
d=1

λd[k]ud[k]. (7)

Here, A and B are the same as in the systems Φd(xd, s).

Fig. 4. Convex combination at time tk: The pink shaded area repre-
sents the convex hull over the reference states in R[k], the projection∑D

d=1 λd[k]xd[k] of the current state x[k] onto this convex hull is indicated
by the blue cross, ∆x signifies the projection residual.

Equation (7) describes an implicit DS, where by implicit we
imply that the system is not given in closed form. Rather,
its definition relies on an online solution of an optimization
problem. Here, the coefficients λd[k] are recomputed at every
time-step tk by minimizing the residual

∆x[k] = x[k]−
D∑
d=1

λd[k]xd[k] (8)

of the projection of the current state x[k] of the actual system
onto the convex hull over the current reference states R[k] (see
Fig. 4). The associated minimization problem is stated in the
QP below

minimize
λ1[k],...,λD[k]

‖∆x[k]‖2H + κ

D∑
d=1

ldλd[k] (9)

subject to
D∑
d=1

λd[k] = 1,

λd[k] ≥ 0, d = 1, . . . , D,

where ld = ‖x[k]−xd[k]‖2 and κ ≥ 0 is a (small) scalar. The
second term in the objective function in (9) is added in order
to resolve redundancy between multiple equivalent solutions
for λd[k] which can occur if the residual ∆x is zero. We
define ‖z‖2H = zTHz for some z ∈ Rn and a positive semi-
definite (and symmetric) matrix H ∈ Rn×n. Let the vector
(λ?1, . . . , λ

?
D) denote a solution of (9) (i.e., λd[k] = λ?d). Since

the coefficients λ?d are recomputed only at discrete steps k
according to (9), they are constant within the time window
[tk, tk+1].

In order to characterize the behavior of the newly formed
DS in (7) we formulate the following proposition.

Proposition 1: The projection residual ∆x[k] converges
onto the convex hull over the reference states R[k] with
dynamics governed by the matrix A

∆ẋ[k] = A∆x[k], t ∈ [tk, tk+1].



Fig. 5. Data acquisition: An Immersion Cyberglove-18 was used to record joint angles during grasp motions at a sample rate of 30 Hz. Starting from open
and closed initial hand configurations, tripod grasps according to the taxonomy in [5] were performed on cylindrical objects.

If the convex hull over R[k] contains the current state x[k], the
projection residual ∆x[k] is zero and the next state x[k + 1]
will be a convex combination of the reference states inR[k+1],
i. e.,

x[k + 1] =

D∑
d=1

λ?dxd[k + 1].

To prove the above proposition we consider for simplicity
zero-order hold discretized systems, although the proof can
be trivially extended to handle the continuous time case. The
respective discretizations of the systems in (2) and (7) are

xd[k + 1] = Āxd[k] + B̄ud[k] (10)

x[k + 1] = Āx[k] + B̄

D∑
d=1

λ∗dud[k], (11)

where Ā and B̄ are the respective state transition matrix and
input vector of the discrete system. Substituting (10) and (11)
in (8) for time tk+1 results in

∆x[k + 1] = Ā

(
x[k]−

D∑
d=1

λ∗dxd[k]

)
︸ ︷︷ ︸

∆x[k]

, (12)

which confirms the first part of Proposition 1.

Furthermore, we note that if the projection residual ∆x[k]
in (12) is zero, the state x[k] can be expressed as a convex
combination of the reference states inR[k]. Thus, for ∆x[k] =
0, we can rewrite (11) as

x[k + 1] = Ā

D∑
d=1

λ∗dxd[k]︸ ︷︷ ︸
x[k]

+B̄

D∑
d=1

λ∗dud[k]

=

D∑
d=1

λ∗dxd[k + 1]

which concludes the proof.

Proposition 1 summarizes the main contribution of this
work. The DS in (7) accounts for different dynamics encoded
from multiple demonstrations while exhibiting a predictable
behavior over the whole state space. This is achieved by
encoding a representation of the underlying demonstrations by
means of the DS itself. States inside the convex hull of the

reference states evolve according to a convex combination of
the references. The matrix A in (7) governs the evolution for
states outside the convex hull of the references and can be
tuned according to the application. As in the original DMP
formulation [9], arbitrary many DoF can be synchronized via
a common phase variable s.

The computational load of the presented scheme at each
time-step k consists of integrating the canonical system in (1)
and the FD dynamical systems in (3), where F is the number
of DoF and D denotes the number of DS (each corresponding
to a demonstration) per DoF. Furthermore, the solution of F
QP’s according to (9) is required.

A remaining question, which is not addressed in the scope
of this paper, is how appropriate the trajectories generated by
the policy in (7) are in the presence of obstacles which are
not known a priori. One could imagine an example were the
combination of the reference dynamics leads to collisions with
unforeseen obstacles. A possible solution is to augment the
underlying dynamical system in (7) with repelling potential
fields such that the resulting states evolve around the obstacles
as it has been shown in [22].

Opposed to existing approaches [10], [12], [20] which use
statistical learning techniques to combine pre-learned DMP in
order to generalize to novel situations, the suggested method
provides a straightforward way to incorporate state constraints.
Since the approach allows to modify the motion generating
system in (7) at each time step, we currently investigate an
alternative way of handling obstacles using model predictive
control. To give an outlook, opposed to optimize the projection
residual ∆x[k] only w.r.t. the current time-step as in (9),
we can use the linearity of the system in (7) regarding the
controls λd[k] to predict the behavior of the projection residual
according to (8) P steps forward in time to obtain ∆x[k + 1]

...
∆x[k + P ]


︸ ︷︷ ︸

∆X

=

 Ā
...

Ā
P−1

x[k]+Z

 λ[k]
...

λ[k + P − 1]

 ,
︸ ︷︷ ︸

Λ

where λ[k] = (λ1[k], . . . , λD[k]) and Z is a Toeplitz matrix
(see, e. g., [23]). The decision vector Λ is determined by min-
imizing ‖∆X‖2H using the same prioritizing scheme as in (9)
to resolve possible redundant solutions. A set of spatial and
temporal polyhedral constraints designed to lead the system
around given obstacles can be included in the optimization.



(a) Position vs. time (b) Velocity vs. time

(c) Phase plane - generalization (d) Phase plane - disturbance compensation

Fig. 6. Generalization over demonstrations and disturbance compensation: Black dashed lines represent the trajectories obtained by simulating the dynamical
system in (7), describing the motion primitive for the MCP joint, starting from different initial conditions. The system was parametrized via the demonstrated
trajectories denoted in pink. Demonstrations d = 1 and d = 3 are associated with grasps made on a cylindrical object with diameter 65 mm starting from closed
and open initial hand configurations respectively, d = 2 and d = 4 correspond to grasps on an object with diameter 33 mm (see Fig. 5). (a) and (b) depict the
curves for position and velocity, the corresponding phase diagram is shown in (c). The behavior of the system in the presence of disturbances is depicted in (d).
After evolving unperturbed initially, the system was subjected to disturbances in position, velocity and a combined disturbance respectively.

Variants of this approach have recently been successfully
applied to on-line path planning schemes for autonomous and
semi-autonomous vehicles [24], [25].

IV. EVALUATION

In this section we evaluate, by means of simulations and
test runs on the Shadow Robot platform, the application of the
suggested method to offline learning of motion primitives from
demonstrated trajectories and the usage of these primitives for
real-time motion control. To this end we used a sensorized
glove (see Fig. 5) to record four sets of demonstrated hand joint
trajectories by performing tripod grasps on two cylindrical
objects with different diameters. The recordings were made
while starting from open and closed initial hand configurations
respectively. The Shadow hand’s joint angles were obtained
via a linear regression mapping from the glove’s sensor space
to the robot’s joint angle space. As the goal is to model
grasp joint motions using DMP driven by a common phase
variable s, the corresponding demonstrations have to live on a

TABLE I. FIXED PARAMETERS USED IN THE EVALUATION

N a b ε ∆c H κ

5 −132.5 −23 10−4 0.05 diag(100, 1) 0

common time interval. Thus, all trajectories were segmented
from the time a non-zero velocity was detected at a joint,
until all joints stopped moving. Furthermore, the demonstrated
trajectories were smoothed by means of a linear least squares
regression and numerically differentiated to obtain velocities
and accelerations. After rescaling and shifting, as described in
Section II-A, the trajectories were re-sampled with a number
of M = 100 points each.

As described in Section II-D, for the F = 20 DoF of the
Shadow hand we used the demonstrated trajectories to estimate
the free parameters of 20 motion primitives according to (6),
the utilized fixed parameters are summarized in Table I. The
constrained nonlinear least squares problems in (6) were solved
with a Sequential Quadratic Programming (SQP) algorithm,
utilizing the ACADO Toolkit [26].



Fig. 7. Tripod grasp primitives triggered from different initial configurations: Synchronized finger joint movements are generated by means of integrating
motion primitives corresponding to (7) which are driven by a common phase variable. Top row: Starting from an open hand configuration; bottom row: starting
from a closed hand configuration.

A. Simulated experiments

To assess the generalization capabilities of the learned
models for the considered point-to-point movements, we per-
formed simulations by initializing the motion primitives from
different initial states. Exemplary, the results for the dynamical
system describing the flexion/extension motions of the middle
fingers Metacarpophalangeal (MCP) joint (the MCP joints
connect the proximal phalanges of the fingers to the palm)
are shown in Fig. 6. Depicted are the obtained position,
velocity and phase plane curves. As argued in Section III,
for states evolving inside the convex hull over the reference
states the distance ratio to the references is governed by the
convex combination coefficients computed as a solution of (9).
States outside the convex hull over the references are attracted
towards this convex hull according to dynamics governed
by the matrix A in (7). It can be seen that the model can
reproduce the demonstrated trajectories with high fidelity while
exhibiting a deterministic behavior in regions of the state space
not covered by the demonstrations.

Furthermore, we investigated the behavior of the model in
the presence of state disturbances. We investigated separate
position and velocity disturbances as well as a combined
disturbance. When, at time tk, the system is perturbed inside
the convex hull of the reference states, the update of the convex
combination coefficients according to (9) at time tk+1 adjusts
the future evolution of the system according to the reference
states at time tk+1. An example is shown in Fig. 6(d) where a
trajectory was started at the initial state x̄2(0) corresponding to
the second demonstration and is pushed onto the reference tra-
jectory associated with the first demonstration. After adjusting
the combination coefficients in the next time step, the system
continues to evolve according to x̄1. Disturbances with states
resulting outside the convex hull of the references again cause
the system to converge towards the projection onto this convex
hull with dynamics as specified in (7).

B. Test runs on the Shadow hand

Here, the goal is to ascertain the feasibility of the developed
motion primitives for real-time motion generation and control
rather then to show a fully applicable grasping/manipulation
system for which other components such as grasp planning,
object perception and obstacle avoidance are necessary which
are not in the scope of this work. A standard laptop was
used to control the Shadow Robot platform via the Robot
Operating System (ROS) framework at 100 Hz. The learned
motion primitives were used to generate motion profiles for
the 20 DoF of the Shadow hand. Appropriate motion profiles
for the 4 DoF of the arm were generated with the ROS
joint spline trajectory controllers, such that hand and arm
motion comprised the same duration. A desired final hand/arm
configuration for a tripod grasp on the ball in Fig. 7 was
obtained via kinesthetic teaching and subsequently adding an
empiric small increment to the joint values in order to ensure
sufficient squeezing of the object. Then, the motion primitives
for the hand joints were triggered from initial conditions
corresponding to open, pronated and closed hand configu-
rations respectively which allowed to successfully execute
synchronized grasp and subsequent lifting motions as shown
in Fig. 7. Here, the arm joints were moved between predefined
start- and final positions. One encountered problem was that
the ROS messaging system introduced unacceptable feedback
delays and that the available low-level position PID tracking
control was of limited quality. Thus, the test runs were carried
out in an open-loop fashion, i. e., the primitives were only used
for online planning of reference profiles between the given start
and end positions without considering state feedback. Figure 8
shows, again exemplary for the MCP joint, the controller set
points obtained from integrating the DS and the resulting
position curves generated by the tracking controller. Despite
the obvious limitations in the low-level control, the grasping
tasks were conducted successfully.



Fig. 8. Test runs on Shadow hand: Tracking controller set-points qr(t) and
position curves q(t) for the MCP joint starting from open (experiment E1),
pronated (E2) and closed (E3) initial hand configuration. Motion duration
τ = 10s.

V. CONCLUSIONS

In this work we present an approach using demonstrated
motion data in order to parametrize dynamical systems for
movement generation via nonlinear optimization. Offline learn-
ing is used to fit the parameters of dynamical systems to the
demonstrated data. For real-time control, we form a new im-
plicit system as a locally optimal combination of the previously
learned DS. This results in a deterministic behavior in state
regions which were not explored during the demonstrations.
Furthermore, the demonstrations can be reproduced with high
fidelity while relying on a comparatively small number of
parameters. We assessed the introduced method by means
of parametrizing the proposed model from demonstrations of
grasp movements and subsequent simulations and test runs
with the Shadow Robot platform. Our approach affords the
flexibility to modify the control inputs of the implicit system
used for motion generation at each time-step. Consequently,
future work will include the incorporation of spatial and
temporal state space constraints for obstacle avoidance in order
to realize a reactive on-line planning/control scheme.

ACKNOWLEDGMENTS

This research has been partially supported by the projects
HANDLE (grant agreement ICT-231640) and ROBLOG (grant
agreement ICT-270350), funded by the European Community’s
Seventh Framework Program (FP7/2007-2013). The authors
would like to thank Guillaume Walck at ISIR, UPMC Paris
for his support with the Shadow Robot platform.

REFERENCES

[1] K. Schittkowski, Numerical Data Fitting in Dynamical Systems.
Kluwer Academic Publishers, 2002.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 1371 – 1394.

[3] J.-H. Hwang, R. Arkin, and D.-S. Kwon, “Mobile robots at your
fingertip: Bezier curve on-line trajectory generation for supervisory
control,” in Proc. of the IEEE/RSJ Int. Conf. on Int. Robots and Systems,
vol. 2, 2003, pp. 1444 – 1449.

[4] J. Aleotti and S. Caselli, “Robust trajectory learning and approximation
for robot programming by demonstration,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 409 – 413, 2006.

[5] T. Feix, R. Pawlik, H. Schmiedmayer, J. Romero, and D. Kragic, “A
comprehensive grasp taxonomy,” in RSS: Workshop on Understanding
the Human Hand for Advancing Robotic Manipulation, 2009.

[6] Shadow Robot Company, “The shadow dextrous hand.” [Online].
Available: http://www.shadowrobot.com/hand/

[7] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” IJRR, vol. 28, no. 7, pp. 851 – 867, 2009.

[8] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the role
of hand synergies in the optimal choice of grasping forces,” Autonomous
Robots, vol. 31, pp. 235 – 252, 2011.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in Advances in Neural Informa-
tion Processing Systems. MIT Press, 2003, pp. 1523 – 1530.

[10] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800 – 815, 2010.

[11] S. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical
systems with gaussian mixture models,” IEEE Transactions on Robotics,
vol. 27, no. 5, pp. 943 – 957, 2011.

[12] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion synthesis
and adaptation using a trajectory database,” Robotics and Autonomous
Systems, vol. 60, no. 10, pp. 1327 – 1339, 2012.

[13] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, pp. 328 – 373, 2013.

[14] F. Stulp and S. Schaal, “Hierarchical reinforcement learning with
movement primitives,” in 11th IEEE-RAS Int. Conf. on Humanoid
Robots, 2011, pp. 231 – 238.

[15] F. Stulp, E. Theodorou, J. Buchli, and S. Schaal, “Learning to grasp
under uncertainty,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, 2011, pp. 5703 – 5708.

[16] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, vol. 84, no. 1 - 2, pp. 171 – 203, 2011.

[17] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
IEEE-RAS International Conference on Humanoid Robots, 2012.

[18] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard, “Learning non-
linear multivariate dynamics of motion in robotic manipulators,” IJRR,
vol. 30, no. 1, pp. 80 – 117, 2011.

[19] F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal, “Compact
models of motor primitive variations for predictable reaching and ob-
stacle avoidance,” in IEEE-RAS International Conference on Humanoid
Robots, 2009, pp. 589 – 595.

[20] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” IIJR, no. 3,
pp. 263 – 279, 2013.

[21] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[22] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-

inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2009, pp. 2587 – 2592.

[23] J. M. Maciejowski, Predictive Control with Constraints. Prentice Hall,
2002.

[24] F. Pecora, M. Cirillo, and D. Dimitrov, “On mission-dependent coordi-
nation of multiple vehicles under spatial and temporal constraints,” in
Proc. of the IEEE/RSJ Int. Conf. on Int. Robots and Systems, 2012, pp.
5262– 5269.

[25] S. Anderson, S. Karumanchi, and K. Iagnemma, “Constraint-based
planning and control for safe, semi-autonomous operation of vehicles,”
in IEEE Intelligent Vehicles Symposium, 2012, pp. 383 – 388.

[26] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – an open
source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298 –
312, 2011.


