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Abstract— The synthesis of multi-fingered grasps on non-
trivial objects requires a realistic representation of the contact
between the fingers of a robotic hand and an object. In this
work, we use a patch contact model to approximate the contact
between a rigid object and a deformable anthropomorphic
finger. This contact model is utilized in the computation of
Independent Contact Regions (ICRs) that have been proposed
as a way to compensate for shortcomings in the finger position-
ing accuracy of robotic grasping devices. We extend the ICR
algorithm to account for the patch contact model and show the
benefits of this solution.

I. INTRODUCTION

Dexterous robotic hands have often been considered as
the most natural choice for robotic applications that require
grasping and manipulation of complex objects in unstruc-
tured environments. Multi-fingered anthropomorphic hands
are especially suitable for manipulation of objects, such as
tools and household objects, whose size and shape are de-
signed to match the capabilities of the human hand. However,
the large number of degrees of freedom in robotic hands and
the complex sensing and actuation schemes make it rather
difficult to apply traditional methods for grasp planning and
control. An attractive alternative to analytical grasp synthesis
methods is provided by the concept of human demonstration.
Humans are able to provide practically an unlimited num-
ber of grasp examples with desired properties on arbitrary
objects. Moreover, these grasps naturally incorporate task
specific constraints, and anthropomorphic robotic hands are
designed to replicate such grasps. In this line of research,
Aleotti et al. [1] presented a method for interactive teaching
of robotic grasps. Their approach considers a given grasp
quality criterion and utilizes the established point contact
model [2] to describe the interaction between object and
fingers.

Analytical approaches for grasp synthesis usually rely on
perfect knowledge of the object geometry. The consequence
is that generated grasps guarantee the satisfaction of a
desired quality criterion only if the robot hand grasps the
object exactly at the prescribed contact points. Since this
is hard to achieve in real world applications, an equally
important property of a grasp is its robustness to positioning
and synthesis inaccuracies. In this context, the notion of
independent contact regions was proposed by Nguyen [3].
He defined the set of optimal independent regions with the
largest minimal radius that yield a force-closure grasp if each
finger is placed anywhere within its respective region. The
concept was extended to the computation of independent
regions for three-fingered grasps on planar objects [4] and

Fig. 1. A three-fingered grasp with a patch contact. Contact points forming
the grasp are marked using red dots. The center points of patches are
depicted using bigger dots.

four-fingered grasps on polyhedral objects by Ponce et al. [5].
In [6], Pollard employs the concept of ICRs to synthesize
grasp families from a single demonstration of a whole-hand
grasp targeted at cases where a large number of contacts
is needed. Roa et al. [7] and later Krug et al. [8] present
approaches for the computation of ICRs of precision grasps,
which are represented as sets of single contact points.

In this article, we propose an approach to grasp synthesis
that combines the intuitiveness of the human demonstration
paradigm with the robustness provided by the concept of
independent contact regions. The execution of precision
grasps as demonstrated by a human using an anthropomor-
phic robotic gripper requires the solution of several prob-
lems, two of which we address in this paper. First, human
demonstrations are inherently inaccurate due to the limited
capabilities of the systems used to record the demonstration.
These types of uncertainty can be dealt with by employing
the concept of ICR. The second problem is that the contact
between a deformable finger and an object is not limited
to a single point but rather to a contact area. Hence, the
representation of a human precision grasp by a point contact
model might not be adequate in many cases, for example
when grasping an object on a sharp edge or on the a handle
of a cup. Note that a human grasp demonstration has (to some
degree) an underlying assumption of a multi-point contact.
The intended properties of a demonstrated grasp can be lost
when a crude approximation as the single-point contact is
used. Hence, analysis (e.g., in the context of ICR) of human
demonstrations based on a single point contact could be
misleading.

For these reasons, we use a representation of a precision



grasp that is not defined as a set of single contact points.
Instead, each contact between a finger and the object is
represented as a patch that comprises a set of point contacts
and accounts for the fact that a deformable finger can adapt
to the surface of the grasped object (see Fig. 1). The main
contribution of this article is the extension of the ICR
algorithm [8] to precision grasps modeled by patches on the
surface of an object. We show that this extension results in
grasp families that better capture the properties of a grasp
obtained from a human demonstration, which ”by design”
relies on a surface contact.

This article is organized as follows: Section II provides
background before the concept of the patch contact model is
introduced in Section III. Subsequently, a generalized version
of the ICR algorithm is described in Section IV. We evaluate
in simulation the proposed algorithm in Section V and draw
conclusions in Section VI.

II. BACKGROUND

A. Nomenclature

• F - number of fingers in a grasp.
• S - number of points on the object surface.
• L - discretization of a friction cone.
• f ∈ {1 . . . F} – index used for fingers.
• s, z ∈ {1 . . . S} – indices used for contact points.
• l ∈ {1 . . . L} – index used for forces and wrenches in

a contact model.
• ps – a point on the surface of the object.
• O - set containing the indices of all points on the

discretized surface of the object O = {1, . . . , S}.
• G - a grasp – set of indices of points on the object

surface in contact with all fingers, G ⊂ O.

B. Assumptions & Problem Description

The surface of an object is given as a discretized polygonal
mesh of points and represented as a set {ps ∈ R3 : s ∈ O}
with corresponding inward-pointing unit normals ns. The
mesh is assumed to be sufficiently discretized to capture
the local curvature of an object. Each point ps has a
neighborhoodN (s) defined as a set of indices of those points
which are connected to ps by an edge of the polygonal mesh.
Furthermore, we assume that a user-input is available in form
of an initial grasp. It can be acquired either by a human
demonstration or by one of the many algorithms proposed
for grasp synthesis (e.g., [7][9]). We will use I to denote the
set containing indices of points on the object surface that are
the centers of the initial contact patches.

I = {s : s ∈ O}, |I| = F. (1)

Each {ps : s ∈ I} is a point on the discrete surface of
an object, where the center of a contact patch between the
robotic finger and the object is located. For example, I =
{11, 113, 531}means that the centers of three contact patches
are at locations p11, p113 and p531.

C. Forces and Friction

One key aspect of modeling a grasp is the definition of a
contact model between the surface of the object to be grasped
and the fingers of a gripper. We adopt Coulomb’s friction
model, which states that slippage between two contacting
surfaces does not occur if the following condition is satisfied

‖(I − nsn
T
s )fs‖2 ≤ µ(nT

s fs), (2)

where fs is the contact force, µ ∈ R+ is a friction
coefficient, and I is the identity matrix (with appropriate
dimensions).

The nonlinear inequality (2) is commonly approximated by
an L-sided polyhedral cone. The forces along the L edges
of the discretized cone with its apex at contact point ps are
denoted in matrix notation as

F s =
[
f1(s) . . . fL(s)

]
.

A contact force fs can be expressed as a conic combination
of forces F s, or formally

fs = F sαs, αs ≥ 0. (3)

The force fs creates a torque τ s = (ps × fs) about the
origin of the reference frame. Force and torque vectors can
be concatenated to form a wrench

ws =

(
fs

τ s/λ

)
, λ = max

s
(‖ps‖2). (4)

Dividing the torque part of ws by the largest torque arm λ
guarantees scale invariance [10]. The wrenches generated by
forces f l along the edges of the discretized friction cone are
referred to as primitive wrenches. For a given contact point
ps, the set of primitive wrenches

W[s] = {w1(s), . . . ,wL(s)} (5)

forms a cone in the wrench space.
In a similar fashion we denote a set of wrenches associated

to more than one contact point, e.g., all wrenches associated
with the contact points of grasp G are denoted by W[G].

D. Wrench spaces

Suppose we are given a grasp G, the set of all wrenches
that can be applied to an object through this grasp (assuming
bounded contact forces) is called the Grasp Wrench Space
(GWS). Formally, the GWS is defined as the convex hull of
the primitive wrenches associated to the contact points in G

GWS = ConvexHull (W[G]) . (6)

Note that not necessarily all wrenches in W[G] are vertices
of the GWS (e.g., when the grasp G contains multiple points
on a planar surface, some of this wrenches may lie on ridges
of the GWS).

The Object Wrench Space (OWS) is the union of the grasp
wrench spaces of all possible grasps for a given object.
Formally, the OWS is defined as the convex hull of the
primitive wrenches associated to all points of the mesh
describing the geometry of an object.
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Fig. 2. (a) A three-fingered grasp on a discretized planar object. All contacts
are described by the single-point contact model, G = I = {1, 2, 3}.
(b) Abstract 2-dimensional representation of the resulting GWS and the
chosen TWS; Also shown are the two search zones S1[1] and S2[1]
corresponding to p1 (see Section IV-A).

The Limit Wrench Space (LWS) [10] is the union of the
object wrench spaces of all possible objects. It is bounded
by the convex hull of all wrenches, which meet the general
force and torques constraints – we assume that ‖fs‖2 = 1
and hence ‖τ s‖ ≤ λ for all s. The OWS is a subset of the
LWS.

Equation (6) characterizes the set of wrenches that can
be exerted on the grasped object when the magnitudes of all
applied forces sum up to a given bound. The geometry of the
GWS is limited by the LWS and determined by the choice of
finger positions on the object and has to fulfill requirements
related to a given task.

A task is represented as a set of wrenches called the
Task Wrench Space (TWS). It represents the set of wrenches
that every viable grasp has to be able to exert on the
object in order to counterbalance the disturbance wrenches
acting on the object. Often the TWS is represented as an
origin-centered ball (this relates to the grasp quality measure
proposed in [11]). A grasp is said to be force-closure, if its
GWS contains a neighborhood of the origin. If the TWS is
contained in the GWS, then the task requirements are also
fulfilled. Formally, the GWS, OWS, LWS, and TWS are not
vector spaces. Nevertheless, we use this naming convention
as it is commonly accepted in the literature.

Fig. 2 depicts GWS, TWS, and LWS of an example
grasp that utilizes the single-point frictional contact model
(G = I = {1, 2, 3}). A point pIf has an associated wrench
cone generated by the two primitive wrenches w1(If ) and
w2(If ). For simplicity, a hypothetical 2-dimensional illustra-
tion of wrenches is adopted, although they are 6-dimensional
in the general case and 3-dimensional for planar grasps.

III. THE PATCH CONTACT MODEL

A. Motivation

The single-point contact model has been widely used in
robotic applications related to grasping [12] [6] [7] [8].
However, in scenarios where anthropomorphic robot hands
with soft or deformable fingers are used, the single-point

contact model might not be realistic because it contains
information only about wrenches that can be exerted through
one single point. Usually, the contact surface of a soft finger
is a patch. Thus, a more realistic contact model should con-
tain information about wrenches that can be exerted through
the entire contact area. As we will discuss in the following
sections, such additional wrenches increase the volume of
the GWS, making the contact model more realistic.

To model a deformable finger more accurately, Goyal et
al. [13] introduced the notion of a limit surface, which later
has been approximated by Howe et al. [14]. Given a planar
contact between two bodies, the limit surface bounds the
space of frictional forces and moments that the contact can
resist without slipping. Ciocarlie et al. [15] use a planar
contact patch on the object surface in their grasp analyses.
The wrenches building the GWS are generated by forces
along the discretized boundary of the patch, thus resulting
in a larger volume of the GWS. In the reminder of this
section we define a patch contact model similar to the one
used in [15]. The patch approximates the contact between
a deformable finger and the object surface and is used in
Section IV to extend the ICR computation algorithm.

B. The Patch Contact

Let us assume that a fingertip has the shape of a ball made
of elastic material. When in contact with a planar surface of
a rigid object, the fingertip forms a circular contact. The
radius of the contact is proportional to the normal force, and
depends on the size, curvature, and material properties of
the fingertip [16]. Motivated by the above assumptions, we
define a patch centered at point ps as a set of point indices

P(s, r) = {z : δzs ≤ r, z ∈ O}, (7)

where r ≥ 0 is a parameter that bounds the size of a patch,
and δzs is the shortest path along the edges of the polygonal
mesh between points with indices s and z. In other words,
a point with index z qualifies to be a member of a patch
around ps if the distance from ps to pz (along the edges
of the polygonal mesh) is less than or equal to r. Since the
neighborhood N (s) of every point in the mesh is known, the
patch P(s, r) can be computed using a simple breadth-first
search with ps representing the root node.

The definition of a patch in (7) is not an attempt for precise
physical modeling, as in [15]. It is rather a simple way of
bounding the shape and area of contact of a deformable
fingertip. Note that the patch always conforms to the shape of
an object, hence the number and the distribution of points in
a patch do not depend only on factors related to the finger,
but also on the local curvature and the discretization of a
mesh.

The proposed definition of a patch is flexible and could
be used to represent a variety of finger contacts. As a special
case, when the radius of a patch is equal to zero, it models
a single-point contact. In such a case, the patch consists of
only one contact point, thus P(s, 0) = {s}. The definition
could be extended to describe other contact geometries (e.g.,
ellipsoidal) with different sizes for each finger. Nevertheless,
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Fig. 3. (a) The same object as in Fig. 2 closed in a three-fingered precision
grasp G = {1, 2, 3, 4}. The contact of one of the fingers (f = 1) is
represented as a patch containing two points P(1) = {1, 4}. (b) Abstract
2-dimensional representation of the GWS associated to the grasp. Marked
are the search zones associated to the patch P(1) (see Section IV-A).

for simplicity of notation, we limit the discussion to patches
bounded by spheres with radius r, the same for all fingers.
Hence, in the sequel the parameter r will be dropped for
simplicity of notation.

In this paper the pressure distribution in a patch is not
considered. The underlying assumption is that the resultant
force exerted by a finger can lie anywhere within its respec-
tive patch.

C. The Grasp
Given the description of a patch in (7), we define an F -

fingered grasp G as a set of point indices participating in
the patches that are centered at points with indices in I, or
formally

G = {s : s ∈ P(If ), f = 1, . . . , F} . (8)

Note that the f th patch in G is centered at point pIf . An
example of a grasp G formed as a set of patches is depicted
in Fig. 1.

As a consequence of using the patch contact model, if
r > 0, the number of contact points participating in a grasp
G increases in comparison to grasps utilizing the single-
point contact model, where |G| = F . Thus, the number of
wrenches forming the GWS of G is also larger. Fig. 3 depicts
essentially the same grasp as shown in Fig. 2, however, with
the difference that one of the fingers utilizes a patch contact
model. Fig. 3(b) depicts the GWS of this grasp. In this
example, there are 4 primitive wrenches associated to the
patch, namely w1(1), w2(1), w1(4), and w2(4) opposed to
only w1(1) and w2(1) in case of the single-point contact
model, as shown in Fig. 2(b).

Fig. 4 compares grasp wrench spaces associated with
the two grasps from Fig. 2(a) and Fig. 3(a). The GWSI
corresponds to the grasp that employs the point contact
model to all fingers, G = I. The GWS corresponds to a
grasp comprising one patch contact in this example. Using
the patch contact model increases the volume of the cor-
responding grasp wrench space due to additional wrenches

Fig. 4. Comparison of grasp wrench spaces: GWSI of a grasp employing
only the point contact model, and the GWS of o a grasp with one patch
contact. The volume difference is indicated by the dashed area. The maximal
radii of respective origin-centered in-spheres are given by dI and d.

contributed by the patch. In general, the GWS of any grasp
formed using patches is a superset of the GWSI of a grasp
formed using the center points only. Also, considering the
spherical quality metric proposed in [11], the radius of the
largest origin-centered sphere possible to fit in the GWS is
usually larger when employing patch contacts.

IV. THE PATCH-ICR
For a given F -fingered grasp, the ICR paradigm forms

F regions as sets of discrete points on the object surface.
Each of these regions corresponds to one finger of a grasping
device. By construction, if each finger is placed inside its
respective region, any resulting grasp is guaranteed to resist
the predefined disturbances. According to Pollard [10], the
set of these grasps constitutes a family of similar grasps. As
assumed in Section II, the mesh is sufficiently discretized,
thus an ICR can be considered as an area rather than a
discrete region, i.e., a grasp preserves the task even when
a fingertip is located on one of the facets of a mesh that is
spanned by points forming an ICR.

To our knowledge, the concept of ICR has only been
used with the single-point contact model [6] [8] [10]. More
elaborate models, as the one proposed in Section III, have
not been considered yet. In this section, we introduce a
generalization of the ICR concept that accounts for the patch
contact model – the Patch-ICR (ICRP ). In the following we
give an explanation of how to construct ICRsP from the input
grasp G and then formalize the construction procedure into
an algorithm.

A. Construction Procedure

The procedure of constructing ICRsP requires the follow-
ing user input:
• definition of a task expressed as a TWS,
• a prototype grasp parametrized as a set of indices of

initial center-points I,
• definitions of patches {P(If , r), f = 1 . . . F}.

In preliminary steps, a grasp G is formed according to (8)
and its GWS is calculated, which requires computation of the



convex hull in (6). If the task requirements are fulfilled, i.e.,
the GWS contains the TWS (see Fig. 3(b)), the construction
procedure of the ICRsP can begin.

The GWS represents the set of all wrenches that the grasp
G can exerted on the object. During the preliminary step
above we have verified that the TWS is a subset of the GWS.
To this end, we can say that the grasp G is redundant with
respect to the task. This redundancy is directly related to the
geometry of the GWS. Since we are only interested in being
able to satisfy the task, we wish to trade-off this redundancy
for the possibility to generate a family of grasps that is
guaranteed to preserve the task requirements. This trade-off
can be defined as an affine transformation of the GWS. Or, in
other words, as a generation of a new polyhedron related to
the GWS. The most commonly used way for performing this
transformation is the procedure of inwards parallel shifting
of the hyperplanes defining the GWS until they are tangent to
the TWS [10]. An alternative approach (including altering the
orientation of the hyperplanes) is discussed in [17]. Fig. 3(b)
depicts conceptually the parallel shifting of some of the
hyperplanes (shifted hyperplanes are depicted using dashed
lines).

The process of transforming the GWS leads to the defini-
tion of zones in the wrench space that are used to identify a
family of grasps, all of which satisfy the task. We associate
a polyhedral search zone Sl[s] with each primitive wrench
wl(s) that is a vertex of the GWS. This polyhedron is formed
by the intersection of exterior half-spaces1 defined by the
hyperplanes that contained wl(s) before they underwent the
affine transformation (e.g., parallel shifting). We denote by
Sf the set of all search zones associated with the f th finger
centered at If .

Sf = {Sl[s] : ∀s ∈ P(If ), ∀ls}, (9)

where ∀ls in (9) stands for the indices of all wrenches
(associated to a point with index s) that are vertices of the
GWS.

Fig. 3(b) depicts the enlarged first finger (f = 1) that
forms a patch contact. Both points with the index in patch
P(1) = {1, 4} have two corresponding wrenches that are
vertices of the GWS. Thus, there are four search zones
associated with finger f = 1, namely

S1 = {S1[1],S2[1],S1[4],S2[4]}.

With reference to Fig. 3(b), note that any primitive wrench
that is inside the search zone Sl[s] can substitute the wrench
wl(s) in the GWS, thus resulting in a GWS that would still
contain the TWS. A more formal discussion on the above
statement can be found in [8], and a proof is given in [18].
The ability to find a substitute for a wrench inside its search
zone is a key property underlying the construction of the
independent contact regions.

1A half-space is said to be exterior if it does not contain the origin,
opposed to an interior half-space that contains the origin.

Definition 1 (ICRP ) Given a grasp G and a task in form
of a TWS, the f th independent contact region (denoted by
Cf ) associated with the patch P(If ) is defined as the set of
indices z ∈ O, each of which has the following properties:

• Each patch
{
P(z) : z ∈ Cf

}
can substitute the origi-

nal patch P(If ) ∈ G without violating the task require-
ments.

• Each z ∈ Cf satisfies the inclusion conditions in
Proposition 1.

The definition implies that each set Cf contains the indices
of points where the center of a patch corresponding to finger
f can be placed.

Proposition 1 (Inclusion condition) The index z ∈ O is
included in Cf if for any search zone Sl[s] ∈ Sf there exists
an s ∈ P(z) such that any convex combination of elements
of W[s] is in Sl[s].

Corollary 1 (Inclusion condition – simple) The index
z ∈ O is included in Cf if for any search zone Sl[s] ∈ Sf
there exists an s ∈ P(z) such that at least one element of
W[s] is in Sl[s].

Proposition 1 follows from the geometric analysis carried
out in [8]. Note that Proposition 1 supersedes Corollary 1
that is a more restrictive inclusion test but computationally
less expensive. The results in Section V are generated using
the inclusion condition according to Corollary 1.

The grasp family associated with G is a set of F -fingered
grasps that preserve predefined task requirements. To gener-
ate a grasp belonging to the family of G we select F indices
– one from each region {Cf : f = 1 . . . F}, and form a set
of patches centered at these indices using (7). A set of these
patches forms a new member of the family, which we denote
as

FG =
{
s : s ∈ P(zf ), zf ∈ Cf , f = 1 . . . F

}
. (10)

Consider again Fig. 3(b) in context of the inclusion condi-
tion from Proposition 1. It depicts a three-fingered grasp G =
{1, 2, 3, 4}, where one of the fingers forms a patch involving
points p1 and p4 (point p1 is assumed to be the center of the
patch P(1) = {1, 4}). In order to be able to form a new grasp
in the family associated with G we search for a patch that
can substitute P(1) (and still preserves the chosen TWS).
Possible candidates are patches centered at the neighbors
N (1) = {4, 6} of p1. Let us first consider P(6) = {6, 1}
(p6 is assumed to be the center). Patch P(6) can substitute
P(1) because wrenchesW[1] = {w1(1),w2(1)} are located
in all search zones S1. Note that wrenches associated to
p6 are not necessary to satisfy the task. In contrast, patch
P(4) = {4, 5} (p4 is assumed to be the center) substitutes
P(1) only if there exists a convex combination of wrenches
W[5] (not depicted in the figure) in the search zone S2[1] –
which does not contain wrenches W[4] = {w1(4),w2(4)}.



(a) (b) (c)

Fig. 5. Construction of a region Cf . (a) Initial patch P(If ). (b) The first iteration of the algorithm. (c) Cf generated after several iteration. The center
of a patch, which represents a finger contact, can be placed anywhere inside the dashed area.

Algorithm 1 construction of ICRsP

1: Input: r, I, {P(If )}, {Sf}, f ∈ 1 . . . F
2: Variables: Ĉ = queue of candidate points; V̂ = indices

of visited points; S̄ = empty search zones; Π = structure
containing visited search zones

3: Output: Cf , f = 1 . . . F
4: for f = 1 . . . F do
5: Ĉ = V̂ = S̄ = Cf = ∅ {clear sets}
6: V̂ = If {classify If as visited}
7: Ĉ = N (If ) {initialize queue with neighbors of If}
8: while Ĉ 6= ∅ do
9: z ← Ĉ1 {dequeue the first element in Ĉ}

10: calculate P(z)
11: S̄ ← Sf \Π(P(z)) {select empty search zones}
12: if InclusionTest

(
S̄,W[P(z)]

)
= true then

13: Cf ← z {qualify z as an ICRP member}
14: Ĉ ← N (z)\V̂ {enqueue unvisited neighbors}
15: end if
16: update Π
17: S̄ = ∅
18: V̂ ← V̂

⋃
z {add z to the set of visited points}

19: end while
20: end for

B. Algorithm

Here, we analyze the key aspects of the construction
procedure of ICRsP , which is summarized in Algorithm 1. It
is assumed that the preliminary steps discussed in Section IV-
A are completed, and for each finger f ∈ {1 . . . F} search
zones Sf are computed – e.g., by using the hyperplane
parallel shifting approach [8]. Algorithm 1 is based on a
breath-first search and can be conducted independently for
each finger.

The algorithm starts with contact point index If . First,
neighbours N (If ) are added to the queue Ĉ, to then be
tested one-by-one for inclusion in region Cf . For each point
index z dequeued from Ĉ, a patch P(z) is computed and its
wrenches W[P(z)] are used as an input to the inclusion test
in Proposition 1. If the test succeeds, z is added to the region
Cf and the neighbors of z are enqueued in Ĉ. The algorithm
terminates when Ĉ is empty, i.e., when there are no points

left to explore.
Since the algorithm utilizes a simple breath-first explo-

ration scheme, frequently two overlapping patches share
common points, thus common wrenches. Therefore, to in-
crease the efficiency of the algorithm the results of the
inclusion test are stored in a container Π. For each index
{s : s ∈ P(z), z ∈ V̂}, the container Π stores a set of
search zones from Sf that contain at least one wrench from
the set W[s]. We denote by Π(s) a query that returns a
set of search zones which, in previous iterations, have been
verified to contain at least one wrench wl(s) ∈ Wl[s]. If s
participates in a patch during subsequent iterations of the
algorithm these search zones do not need to be checked
again. In each iteration, a set of remaining empty search
zones S̄ ⊆ Sf is obtained as S̄ = Sf \Π(P(z)).

To give a better view on the construction of ICRsP let
us examine Fig. 5(a) depicting a patch P(If ) centered at
initial point pIf . In the first iteration of the algorithm (see
Fig. 5(b)), a point pz is being tested for inclusion. Having
two partially overlapping patches (P(If ) and P(z)), the in-
formation from structure Π is used to determine search zones
that are already filled. Subsequently, in the inclusion test, it
is checked if any wrench in W[P(z)] fills the remaining
empty search zones S̄. In Fig. 5(b), points associated to the
empty zones are marked using red stars. The inclusion test
terminates if either Proposition 1 is satisfied or there is no
wrench in W[P(z)] that satisfies it. After several iterations
of the algorithm, the region Cf is created (see Fig. 5(c)). The
center of a patch can be safely placed anywhere inside the
region (depicted as the dashed area) without violating the
task.

The described algorithm for generating ICRsP has been
implemented in Matlab as a proof-of-concept without pri-
oritizing computational efficiency. Nevertheless, we briefly
discuss the computational complexity of the algorithm. The
three most computationally expensive steps are the following.
First, the construction of the GWS. In this step, a 6D convex
hull over L|G| primitive wrenches is computed, where L is
the friction cone discretization. Considering the QuickHull
algorithm [19], this step has a complexity of O

(
(L|G|)3/6

)
.

Second, for each candidate point in the queue Ĉ, Algorithm 1
computes a patch. Since the neighborhood of each point ps is
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Fig. 6. The resulting ICRsP according to Algorithm 1 for an anthropomor-
phic 4-fingered grasp with an opposing thumb (µ = 1, α = 0.56), contact
model: (a) the single-point contact with friction. (b) the patch contact with
friction, parameter r = 6mm.

known in advance, the complexity of forming a patch using
(7) is O (S + E), where E is the number of edges connecting
vertices of the mesh. Finally, evaluating the inclusion test
according to Proposition 1 requires the solution of a linear
programming problem. Since the calculation of each region
can be done independently, Algorithm 1 can be parallelized
in the number of fingers participating in a grasp.

V. RESULTS

In this section we demonstrate the validity of the patch
representation and the applicability of the presented algo-
rithm for generating ICRs. We used two different contact
models, the single-point contact model (with friction), and
the patch contact model (with friction). We refer to the
results obtained using the former as ICR0 and to the results
generated using the latter as ICRP . The center points I were
acquired in a human demonstration phase using a motion
capturing setup [20]. The ICRs0 were directly generated

from the grasp G = I (i.e., r = 0). To calculate ICRP the
grasp G was obtained via (7) and (8). In the experiments, the
TWS was represented as an origin-centered ball, the same
for both contact models. In each experiment the radius was
set as a fraction α of the largest origin-centered ball that fits
into the respective GWSI . Search zones were formed using
parallel shifting as in [8]. To show the benefits of ICRsP ,
the two different contact representations are compared on
two objects. The geometric center of the object was used as
an origin of the reference frame.

In the first experiment, an anthropomorphic 4-fingered
grasp with an opposing thumb was demonstrated on a cup.
Parameters α = 0.56, and friction coefficient µ = 1 were
chosen. The ICRs computed on this object are depicted
in Fig. 6. We observe in Fig. 6(a) that when the single-
point contact model was used, ICR0(1) associated with the
thumb contains only one contact point. It is evident that
in this case the point contact model is not adequate, since
it does not leave any space for finger misplacement. A
patch (if it contains more than one point) contributes more
primitive wrenches that span the GWS. In Fig. 6(b) patches
parametrized by r = 6mm for all fingers are used (friction
coefficient and TWS are the same as in Fig. 6(a)). It is
clearly visible that ICRsP of all fingers are larger and more
balanced, compared to the results obtained with the point
contact model.

In the second experiment, we consider a scenario in which
a human demonstrates a 3-fingered grasp on a pencil. When
the point contact model is used, only three single-contact
points are placed on the hexagonal shape of the pencil,
as depicted in Fig. 7(a). ICRs0 generated from this initial
grasp do not represent the true grasping possibilities. Such
an “unintuitive” output occurs because of two reasons: (i)
the ICR algorithm is very sensitive to the initial placement
of fingers when the single-point contact model is used;
(ii) the single-point contact model does not exert as many
primitive wrenches as the soft deformable finger in reality.
In comparison, ICRsP (depicted in Fig. 7(b)) were computed
utilizing patches parametrized by r = 3mm. Again, the same
TWS and µ = 1 is used. The patch contact envelopes the
geometry of the pencil. As a consequence, the generated
ICRsP are significantly larger and resembles a grasp family
corresponding to a hand with deformable fingers in a more
realistic fashion.

To give an idea about the execution time of the presented
ICR algorithm, trial series of experiments were performed.
Five anthropomorphic grasps on the model of a cup were
generated. The execution time of the algorithm was measured
for the patch parameter r ranging from 1mm to 10mm. The
size of a patch directly relates to the number of contact
points in a grasp G, which has a major influence on the time
performance. Fig. 8 presents the execution time as a function
of |G|. The time evaluation was performed on a Core2Duo
2 GHz computer.



(a) (b)
Fig. 7. ICRs generated with different contact models. Friction coefficient µ = 1, parameter α = 0.56 (a) the single-point contact model, (b) the patch
contact, r = 3mm.

Fig. 8. The execution time of the ICR algorithm as function of grasp size
|G|.

VI. SUMMARY

This paper presents an extension of the concept of Inde-
pendent Contact Regions (ICRs). Instead of the commonly
used single-point contact, we adopt a patch contact model
that captures in a more realistic way the contact between a
rigid object and a deformable finger. We show that the patch
contact model used in the context of ICRs results in grasp
families that better capture the properties of a grasp obtained
from a human demonstration (which ”by design” relies on a
surface contact).

We propose a computation algorithm and evaluate our
solution in simulation on models of two real objects, using
grasps acquired via human demonstration. The benefits of
using the patch contact model in the context of ICRs are
especially apparent when considering grasps with contacts
on edges.

More detailed research is needed to evaluate the reliability
of the generated independent regions in real-world robot
grasping applications. Further work on an efficient imple-
mentation is also necessary.
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