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Abstract— The synthesis and evaluation of multi-fingered
grasps on complex objects is a challenging problem that has
received much attention in the robotics community. Although
several promising approaches have been developed, applications
to real-world systems are limited to simple objects or gripper
configurations. The paradigm of Independent Contact Regions
(ICRs) has been proposed as a way to increase the tolerance
to grasp positioning errors. This concept is well established,
though only on precise geometric object models. This work
is concerned with the application of the ICR paradigm to
models reconstructed from real-world range data. We propose
a method for increasing the robustness of grasp synthesis
on uncertain geometric models. The sensitivity of the ICR
algorithm to noisy data is evaluated and a filtering approach
is proposed to improve the quality of the final result.

I. INTRODUCTION

Robotic grasping of unfamiliar objects is still a serious
challenge despite many years of research. In a typical robotic
application, a manipulator equipped with a specific gripper
(e.g. parallel jaws) can grasp various objects, relying on a
set of known geometric properties. This strategy is usually
applied to simple object shapes, due to the limited functional-
ity of the gripper. Similarly, a number of approaches address
more complex shapes by partitioning the target object into
simple primitives [1]. When multi-fingered robotic hands are
employed to grasp non-trivial objects, a common practice
is to perform grasp synthesis on precise geometric models.
Such models might be available in industrial applications
but in unstructured environments the object model has to be
built from sensor data. Although methods for reconstructing
3D shapes from sensor data exist, the problem of grasp
synthesis on uncertain object models has not been thoroughly
investigated.

Grasping methods that operate in conjunction with online
sensing and model reconstruction can be roughly divided in
two categories, depending on the type of the object model.
One group of approaches use computer vision to extract
grasp-related object features and compute appropriate grasp
configurations. Morales et al. [2] use a vision based approach
for the generation of planar grasps from 2D object contours.
The authors also assess the reliability of the grasps using
an experience database. Another approach based on visual
features proposed by Saxena et. al. [3] learns grasps for a
parallel gripper, based on 2D images. Both of these prior
works however are not suitable for grasping of complicated
3D objects with a multi-fingered robotic hand. The second
major group of methods concentrate on generating grasps

Fig. 1. Acquisition system setups: (Left) A Kinect camera observing an
object mounted on the end-effector of an ABB IRB140 manipulator; (Right)
An example object is scanned by a SwissRanger SR4000 camera mounted
on an ABB IRB340 manipulator.

for reconstructed 3D object models. For example, Bone et
al. [4] present a vision based method which creates 3D
models of unknown objects and generates a force-closure
grasp. However, the method is limited to objects which can
be grasped by a parallel-jaw gripper. Another method for
grasping of unknown 3D objects is proposed by Hübner
and Kragic [5]. They obtain a 3D point cloud from a stereo
camera and decompose it into a constellation of boxes which
are then used for grasp synthesis. This approach however
relies on the existence of sufficiently similar pre-learned
grasp primitives and thus does not apply to arbitrary objects.

Analytical approaches to multi-fingered grasp generation
rely on perfect knowledge of the object geometry. As a result,
generated grasps would guarantee the satisfaction of a de-
sired quality criterion only if the robot hand grasps the object
exactly at the prescribed contact points. In light of this fact,
it has been recognized that an equally important property
of a grasp is its robustness to positioning inaccuracies, i.e.,
grasps that are less sensitive to modeling and positioning
errors are desired. In this context the notion of Independent
Contact Regions (ICRs) was suggested by Nguyen [6]. He
defined the set of optimal independent regions with the
largest minimal radius, which yield a force-closure grasp if
each finger is placed anywhere within its respective region.
The concept was extended to the computation of independent
regions for three-finger grasps on planar objects [7] and
four-finger grasps of polyhedral objects by Ponce et al. [8].
In [9], Pollard addresses the synthesis of whole-hand grasps
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Fig. 2. Considered target objects: (a) The selected set of objects whose models were used in the evaluation; (b) & (d) Reconstructed meshes based
on unfiltered point clouds acquired by range sensing; (c) & (e) Corresponding ground-truth CAD-model meshes; Note the surface distortions and double
layers on the sensor-acquisition based meshes;

on 3D objects based on a prototype force-closure grasp and
introduces an approach that can account for a user specified
task related quality measure. Roa and Suárez [10] suggested
an approach, which grows independent regions for precision
grasps on discretized objects. In a previous work [11], the
authors presented an efficient algorithm for the computation
of such independent regions.

The contribution of this work is two-fold: firstly, it in-
vestigates the sensitivity of the ICR generation algorithm to
uncertainty in the target object’s geometric model. Secondly,
a preprocessing method is proposed and the quality of the re-
sulting ICRs is evaluated. Applied to noisy real-world object
models, our method significantly improves the performance
and the robustness of the ICR algorithm.

This paper is organized as follows: the next section
provides an overview of the reconstruction of 3D shape
models, the particular sensor setup used in this article and
the algorithm used for ICR generation. Section III provides
an analysis of the sensitivity of the ICR algorithm to model
noise and a description of the proposed filtering approaches.
Section IV presents the ICR quality evaluation methodology
utilized in this paper. Section V discusses the experimental
results on several test objects. Finally, we conclude with
a summary of the main results and the limitations of the
approach.

II. BACKGROUND & MOTIVATION

Geometrically motivated grasp synthesis algorithms for
articulated multi-fingered manipulators, including the ICR
approach [11] considered in this work, usually assume the
availability of precise models of the target objects. Models,
usually represented as polygonal meshes, can be produced
either by a human designer or acquired automatically through
expensive scanning equipment [12]. While such an approach
is reasonable for applications in traditional static factory
automation, in many interesting scenarios accurate object
models are not available. One prominent example is the mo-
bile manipulation task that usually requires on-board sensing
capabilities and online reconstruction of object models [13].

We are interested in evaluating the ICR paradigm on target
object models synthesized from noisy range-data and suitable
preprocessing methods of these models. Online model acqui-
sition requires many sub-problems to be solved, such as on-
the-fly scan segmentation, scan registration, view-planning
and meshing [14]. This a complex topic and out of the scope

of this paper. Here, the model acquisition was carried out in
a straightforward manner described in the following section.

A. 3D Shape Reconstruction from Range Measurements

A multitude of light and relatively inexpensive range
sensors are currently available for use in the robotics com-
munity. In this work, two range sensors – a Microsoft Kinect
structured light camera and a SwissRanger SR4000 Time of
Flight (ToF) camera, have been used to sample points from a
set of target objects. The Kinect is an off-the-shelf sensor that
provides VGA-size, relatively high quality depth images. Its
measurement accuracy was assessed to be satisfactory for
object modeling and thus the Kinect range data was used
directly, without performing further calibration routines. In
contrast, the accuracy of the SR4000 sensor is affected by
several error sources, typical for a ToF-based measurement
system. Satisfactory precision can however be achieved using
relatively straightforward calibration procedures (see e.g.
Fuchs et. al. [15]). Even more precise surface reconstruction
with a ToF sensor is possible [14] using dynamic error
models and non-rigid scan registration, though at greater
computational costs.

The two aforementioned scanners have been used in the
two different acquisition setups shown in Fig. 1. The SR4000
camera was mounted on the end-effector of an ABB IRB340
industrial manipulator. The range sensor was calibrated to
compensate for lens distortions using a checkerboard pattern
and standard image rectification algorithms available in the
OpenCV [16] library. Additional thresholding and filtering
were employed to reduce common illumination induced ToF
errors, in a manner similar to the calibration procedures
in [15]. In order to obtain a complete object scan, the
manipulator was programmed to move around the target
object, placed in the center of its workspace. In the second
sensor set up, the Kinect camera was placed in a fixed
position and oriented towards the workspace of an ABB
IRB140 industrial manipulator (see Fig. 1). A checkerboard-
textured support was fixed to the manipulator end-effector.
Target objects were then mounted on the support and rotated
around a single axis. The initial pose of the camera relative
to the checkerboard pattern was estimated using standard
computer vision procedures.

In both setups, the relative pose between sensor and
target was obtained using the end-effector pose. All sensor
measurements were then fused in a single reference frame,
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Fig. 3. Concept of ICR-generation: (a) Wrenches associated with the
contact points pn of the initial four-fingered prototype grasp and its
corresponding grasp wrench space; (b) The TWS represents the set of
wrenches necessary to counterbalance expected disturbances; Hyperplanes
associated with facets of the initial GWS are translated in parallel until
they are tangent to the TWS; Search spaces (the colored shaded areas) in
the wrench space are formed by the intersection of exterior half-spaces
corresponding to the shifted hyperplanes (a half-space is designated as
exterior if it does not contain the origin, opposed to an interior half-space
which contains the origin); A point ps on the object’s boundary qualifies
for inclusion in region Cn if its associated wrench lies in the search space
associated with pn;

resulting in a complete object point cloud. Subsequently,
triangular mesh representations were reconstructed from
these point clouds using the ball pivoting surface reconstruc-
tion algorithm [17]. The output of this model acquisition
procedure is of comparable quality to the results reported
in [15], but significantly less accurate then the approach of
Cui et. al. [14]. Notably, the accuracy of the final models
is similar to the one to be expected in a typical on-line
manipulation task, and thus the acquired models constitute a
valid target evaluation scenario. Figures 2 (b) & (d) show two
geometrical models and the corresponding triangular meshes
reconstructed from range data.

B. Independent Contact Regions

Here, we give a brief overview of the algorithm used
to compute the independent regions. For more details, the
reader is referred to [11]. The computation requires a dis-
cretized representation of the target object’s surface as a
polygonal mesh of points ps (s = 1, ..., S) with correspond-
ing inward-pointing unit normals ns. Each point ps has
associated neighboring points, connected to ps by an edge of
the polygonal mesh. A triangle in a mesh is defined by the set
T = {pi,pj ,pk}, where the elements of T are neighboring
vertices.

A grasp is defined as a set of N contact points on the
object’s surface G = {p1, · · · ,pN}. Contact forces fs
and the resulting torques τ s = ps × fs are concatenated
to wrench vectors ws = (fs, τ s). Depending on the
deployed contact model, fs has to satisfy certain constraints
as described in [11]. Eligible contact models are point
contact with/without friction and soft finger point contact.
The convex hull over the set of all wrenches that a given
grasp can apply to the object is referred to as the Grasp
Wrench Space (GWS).

The utilized algorithm requires two forms of user-input.
First, a set of expected disturbance wrenches needs to be
specified. The convex hull over the mirror image of this set
is commonly labeled as Task Wrench Space (TWS). In this

Fig. 4. Independent Contact Regions: ICR computed on the CAD-generated
mesh of a cup for a four-fingered grasp comprising frictional point contacts;
Big dots indicate the initial grasp contact points pn; Finger placement
anywhere within the regions ensures that the task requirement is fulfilled;

work we formulate the TWS as a sphere, parametrized by a
fraction of the radius of the largest origin-centered insphere
of the prototype grasp’s GWS. This relates to the grasp qual-
ity measure proposed by Kirkpatrick et al. [18]. Second, an
initial prototype force-closure grasp which satisfies the task
requirement needs to be available. In a typical scenario, this
prototype grasp is provided by a human demonstrator [19]
or by a grasp planning algorithm [20].

ICRs are defined as N independent regions Cn, each one
associated with a contact point pn of the prototype grasp.
The sets Cn contain points on the target object’s surface,
each of which can replace pn in G. By construction, any
grasp composed of N contact points, where one point is
picked from each region Cn, will be force closure and
preserve the task requirements. Essentially, the set containing
these grasps constitutes a grasp family associated with the
prototype grasp [9]. It is assumed that the target object is
sufficiently discretized to capture local curvature, i. e., grasps
with contacts on mesh facets spanned by the points forming
the regions Cn will also guarantee the task requirements. The
mesh area formed by the set of all triangles {Tn} stemming
from neighboring points which are members of Cn is denoted
as A(Cn).

The basic idea behind the deployed algorithm for comput-
ing ICRs is shown in Fig. 3. Although the results in Section V
were generated with grasps utilizing the frictional point
contact model, for ease of understanding, the computational
principle is illustrated in a hypothetical 2D wrench space for
a grasp with frictionless point contacts. Regions Cn are grown
from the contact points pn associated with the prototype
grasp. The number and distribution of points forming these
regions depend on the geometry of the GWS corresponding
to the provided initial prototype force-closure grasp, and the
disturbances considered via the TWS. Figure 4 shows an
example of ICR computed via the outlined algorithm. An
extensive benchmark of the algorithm can be found in [11],
where it is shown that run times in the envisioned setting are
typically well below one second on a standard PC.



Fig. 5. Filtering: Example mesh generated after smoothing the raw point
cloud (obtained via the SR4000 TOF-camera) according to Algorithm 1;

III. ICR ON RECONSTRUCTED OBJECTS

A. Noise Sensitivity

A point on the object’s boundary qualifies as a member
of an independent contact region Cn, if wrenches associated
to that point are inside respective search regions in the
wrench space (see Fig. 3-(b)). This constitutes a demanding
constraint which makes growing of ICRs very sensitive to
the noise in point position and vertex normal direction and
relates to several distinctive errors occurring in the recon-
structed meshes. First, due to the high levels of random noise,
the reconstructed meshes exhibit rough surfaces, whereas the
original object is piecewise smooth. Two other sources of
errors are significant to the application scenario discussed –
the occurrence of layered surfaces and holes in the meshes.
Both of these artifacts are induced by sensor noise present
in the sampled point clouds.

We generated CAD-model meshes for all target objects,
which were treated as ground-truth for comparison pur-
poses. Our early experiments showed that regions com-
puted on sensor-acquisition based meshes are typically much
smaller than corresponding ones on CAD-model meshes,
thus making the usefulness of such independent regions ques-
tionable. In order to address these issues and to compensate
for the model errors induced by sensing, a filtering method,
which is carried out before meshing the raw point cloud, has
been developed. It consists of two steps:

1) Point cloud smoothing,
2) Preselection of points.

Both techniques are explained in the following section.

B. Filtering strategy

1) Point cloud smoothing: The first step is inspired by a
technique originating in the field of mobile robotics, namely
the Three-Dimensional Normal Distributions Transform (3D-
NDT). The 3D-NDT is a spatial representation paradigm
originally developed by Magnusson et. al. [21] for use in
point set registration. Andreasson et. al. [22] note that in
most real world environments sampled surfaces can be rep-
resented accurately by flat, disc-shaped Gaussian probability
distribution functions (PDF).

Algorithm 1 Point cloud smoothing
1: Input: Sets of points {ps}, sliding window radius r
2: Output: Updated sets of points {pnews }
3: Ws = ∅
4: for all ps do
5: center the windowWs at ps and include neighboring

points
6: µs,Σs ← fit Gaussian PDF to Ws

7: λ
(i)
s ,v

(i)
s ← eigenvalues and eigenvectors of Σs

8: update point: ps = p
new
s according to (1)

9: end for

The proposed smoothing method is summarized in
Algorithm 1. The presented technique employs a spherical
sliding window Ws with a pre-fixed constant radius r which
iterates over all points ps in the point cloud. Following the
central idea of the 3D-NDT, a Gaussian PDF N (µs,Σs) is
fitted to the point samples in each window Ws. A three-
dimensional normal PDF can be viewed as a confidence
ellipsoid, whose size and orientation are determined by the
covariance matrix Σs. After eigenvalue decomposition of
Σs we obtain eigenvalues λ(i)s : i = 1, 2, 3 , λ

(1)
s ≥ λ

(2)
s ≥

λ
(3)
s , and associated orthonormal eigenvectors v(i)s . Since the

planes spanned by the two eigenvectors corresponding to
the two dominant eigenvalues approximate the local surface
shape, the point cloud is smoothed via projecting points ps
onto the aforementioned planes:

pnews = ps + v
(3)
s (µs − ps)

T
v(3)s . (1)

The aforementioned ball pivoting algorithm was used to
generate meshes and vertex normals for the smoothed point
cloud. Early experiments showed a significant improvement
in terms of the size of the yielded contact regions Cn.
However, smoothing introduced another problem, namely the
occurrence of false positive ICR-areas. Such areas appear
when contact points are included in regions Cn on a mesh
reconstructed from range data, although they are not qualified
for inclusion in the ground-truth regions yielded on a corre-
sponding CAD-model mesh (see Fig. 6). False positive areas
proved to arise frequently in object surface zones where the
PDFs according to Algorithm 1 were spherical rather than
flat. Due to the nature of the utilized scanning equipment,
such non-flat ellipsoids are caused by high levels of sensor
noise or fine details in the sampled surface, as well as corners
between two surfaces. Thus, we developed a simple point
preselection method which excludes points ps with a high
uncertainty level from the ICR-computation as elaborated
below.

2) Point preselection: The second proposed preprocessing
step prohibits uncontrolled ICR growth into object regions
that are hard to reconstruct using the previously presented
smoothing technique. Points excluded in this selection pro-
cess cannot belong to any region Cn and thus cannot be part
of the initial grasp G. The selection is based on the following
two criteria:

• cardinality of Ws,



Fig. 6. Comparison of ICRs: The blue regions were computed on a mesh
reconstructed from a sensor-acquired point cloud after filtering according to
Section III-B; Regions generated on the corresponding CAD-based mesh are
depicted in green. The parts of the region on the reconstructed mesh which
do not overlap with the ground-truth region constitutes a false positive area;

• flatness F (ps) =
√

λ
(2)
s

λ
(3)
s

,

which are easily obtained during the smoothing stage. The
intention is to exclude points ps which are isolated and/or
yielding low flatness of the associated PDFs. Experiments
indicated that good decision thresholds are the respective
mean values of the two selection criteria. Thus, a point ps
is excluded if the cardinality of the associated window Ws

is smaller than the average cardinality over all points and/or
the flatness F (ps) is smaller than the average flatness over
all points.

The proposed strategy does not affect the ICR algorithm
itself, but it might prohibit the inclusion of some eligible
points in regions Cn. However, it also decreases the chance
of false positives by restraining point inclusion in surface
areas with high variance along the vertex normal directions.
It limits the ICR growth in areas where Algorithm 1 can give
uncertain results, such as curves and edges. Furthermore,
isolated flying points are filtered out efficiently.

3) Filtering complexity: Algorithm 1 requires iteration of
the sliding window Ws over all S points ps in the point
cloud and inclusion of neighboring points. Assuming a k-d
tree representation of the point cloud, this requires time of
order O (S log(S)). Computing the Gaussian PDF in step 6
of Algorithm 1 is linear in the number of points contained
in Ws. All other steps, including the point preselection, are
time constant. Thus, the overall complexity can be stated as
O (S(log(S) + E[|Ws|])). Here, E[|Ws|] denotes the expec-
tation value of the cardinality of Ws, which depends on the
density of the point cloud and the chosen window radius r.

IV. EVALUATION METHODOLOGY

For convenience, henceforth meshes reconstructed from
unfiltered point clouds are referred to as raw meshes, meshes
reconstructed from filtered point clouds are denoted as fil-
tered meshes and meshes stemming from CAD-models are
called CAD meshes. Also, contact regions computed on these
meshes are augmented with according superscripts, i. e., CR

n

Algorithm 2 Intersection Estimation for one region CSn
1: Input: Independent regions CC

n and CS
n

2: Output: Intersection region In
3: initialize In = ∅
4: for all pSs ∈ CSn do
5: pC ← PS2C(p

S
s ) map pSs onto the CAD-mesh

6: define line L parallel to normal nC and passing
through pSs

7: find the triangles {T CI } ∈ {T Cn } intersected by L
8: if ∃{T CI } then
9: Add {T CI } to the intersection: In ← In ∪{T CI }

10: end if
11: end for

stands for a region computed on a raw mesh, CF
n denotes

an underlying filtered mesh and CC
n indicates a region on a

CAD mesh.
To make any comparison possible, we have to define a

mapping of points from one mesh type onto the other. The
mapping of a vertex pCs from a CAD-mesh onto a sensor-
acquisition based mesh (indicated by the superscript S -
either filtered or raw mesh) is defined as:

PC2S

(
pCs
)
= argmin

pS

(
‖nCs × (pCs − pS)‖2

)
, (2)

and identifies the point pS , belonging to the sensor-
acquisition based mesh, which comprises the smallest normal
distance to the line along the vertex normal nCs associated
with pCs . Similarly, an inverse mapping of a point on the
sensor-acquisition based mesh onto the CAD mesh can be
formulated:

PS2C
(
pSs
)
= argmin

pC

(
‖nC × (pSs − pC)‖2

)
. (3)

Note that both projections are formulated with respect to
vertex normals of the CAD mesh. This is due to the fact that
the directions of vertex normals obtained from reconstructed
range-data frequently deviate substantially from ground-truth
and the aim is to decouple the evaluation procedure from
uncertainties introduced by sensing errors.

To evaluate the ICR algorithm, two sets of experiments
were performed. First, the contact region areas A(CSn ) ob-
tained on filtered and raw meshes were compared to the
corresponding ground-truth area computed on a CAD mesh.
We also investigated to what extend the respective regions
overlap, in order to detect false positives. This was done
utilizing Algorithm 2, which maps vertices from a sensor-
acquisition based mesh onto the corresponding CAD mesh
pC ← PS2C(p

S
s ) according to (3). Subsequently, a line L

passing through pSs and parallel to nC is formulated. All
triangles {T Cn } which are intersected by this line qualify
for inclusion in the intersection In. Figure 6 shows an
intersection of independent regions grown on a filtered mesh
and a CAD mesh.

The aim of the second set of experiments is to assess
the effectiveness of the proposed filtering in a real-world
scenario considering the encountered problem with false



Fig. 7. Quality criterion Qn: Vertices on the border of CC
n are depicted

in green, the vertices of the corresponding region computed on a sensor-
acquisition based mesh are mapped onto the CAD mesh according to (3);
The central points (those which minimize the maximum distance to the
other vertices in the respective region) are marked red; d1 and d2 denote
the shortest distance from the respective central points to the border of
CC
n (note that d2 is negative in case its associated central point is outside

A(CC
n )); Quality Qn = d2/d1;

positives. This test is based on the idea that if we move
the initial prototype grasp contacts towards the center of
their associated independent regions Cn (generated on a mesh
stemming from range-data), we will achieve higher robust-
ness with respect to finger positioning and sensor-induced
modeling errors. To this end, we suggest a simple quality
criterion Qn = d2/d1 as illustrated in Fig. 7. If Qn = 1,
the central point of the considered region coincides with
ground-truth and placement of a grasp contact in this point
still guarantees the task requirement despite a possible false
positive area. Decreasing values of Qn indicate increased
sensitivity to positioning uncertainty. Note that this measure
also incorporates the distance to a possible false positive area
and thus, large values of Qn correspond to high robustness.

The experiments were carried out as follows: for all test
objects the CAD mesh, raw mesh and filtered mesh were
manually registered in a common coordinate frame. In order
to compare ICRs generated on the same object for different
mesh types, the following procedure has been applied:

• A N -finger force closure grasp GC was generated on the
CAD mesh. Grasp contacts were modeled as frictional
point contacts with a friction coefficient of µ = 0.8, the
corresponding friction cones were approximated with
octagonal pyramids.

• The corresponding grasps GR and GF on the recon-
structed meshes were found according to (2).

• It was verified whether GF passed the preselection
routine defined in Section III-B.3.

• If both grasps GR and GF fulfilled the given task
requirement, CC

n , CR
n and CF

n were computed. The task
wrench space (see Section II-B) associated with each
grasp was formulated as the largest origin-centered
insphere of the GWS associated with GC , multiplied
with a factor α = 0.8.

• The respective intersections of CR
n and CF

n with CC
n were

generated using Algorithm 2. Furthermore, the quality
measures Qn for CR

n and CF
n were computed.

On the CAD meshes of every object in Fig. 2-(a) two test

sets, containing 200 randomly generated four- and five-finger
force closure grasps respectively, were produced in order to
ensure an unbiased and statistically significant evaluation.

V. EXPERIMENTAL RESULTS

Already during the generation of the test grasp sets
we found that the proposed smoothing/preselection method
increases the number of grasps which preserve the task
requirement after mapping them onto the range-data based
meshes. More specifically, 98.3% of the grasps on the filtered
mesh were eligible, while only 88% of them fulfilled the task
after projection onto the raw mesh.

The first set of experiments compares the ICR areas
obtained on sensor-acquisition based meshes with the cor-
responding areas computed on respective ground-truth CAD
meshes. Table I presents the intersection areas as percentages
of the ICR areas on the CAD meshes. The same measure is
computed also for the false positive areas. All values are
medians for all contact regions accumulated for all objects.
We chose to report the results in median values rather
than mean values, in order to not overvalue a few outlier
cases with very large false positive areas. Such cases arise
especially when a region on the CAD mesh is very small –
e.g. a single point. The results show that the filtering method
significantly increases the size of the ICRs. The intersection
area on a filtered mesh is, on average, about five times larger
than the one on a raw mesh. Essentially, generating regions
on raw meshes is inadequate, since their average size is only
12% of the corresponding ground-truth. However, an adverse
effect of the proposed filtering is that in can increase the false
positive area which, in some extreme cases (Wooden Toy 1
object), reaches a median value of 21%.

In the second experiment we computed quality measures
Qn, as introduced in Section IV, for each independent region
generated on range-data based meshes for all test objects.
This was done in order to assess the usefulness of these
ICRs considering a manipulator which tries to position its
fingers in the center of the respective regions. Figure 8 shows
histograms of the cumulative quality measure for the 4- and
5-finger grasp test sets. The number of regions Cn (expressed
as a percentage of all regions evaluated in the experiment)
with a high quality Qn is larger when mesh filtering is
applied. It is evident that in this context the regions generated
on filtered meshes are more robust than their counterparts on
raw meshes, despite possible false positive areas.

VI. DISCUSSION

This paper presents a method for generation of stable
grasp families on objects reconstructed from real-world
3D-sensing data by employing the concept of independent
contact regions. It is shown that the applied ICR algorithm
is rather sensitive to inconsistencies in the reconstructed
triangular mesh, which seriously limits its applicability in
practice. Therefore, we have proposed a filtering approach
which significantly increases the size of the generated ICRs
and obtains a higher consistency with the ground truth.



TABLE I
INTERSECTION (INT) AND FALSE POSITIVE (FP) AREAS AS A

PERCENTAGE OF THE ICR AREA ON THE GROUND-TRUTH CAD MESH

Smooth mesh Raw mesh
Int[%] FP [%] Int[%] FP[%]

SR4000
Cup 56 2.0 14 0.0
Wooden Toy 1 54 20 14 0.0
Wooden Toy 2 49 1.0 4.0 0.0

Kinect
Cup 62 10 17 0.0
Wooden Toy 1 70 21 17 0.0
Wooden Toy 2 50 1.0 12 0.0
Bottle 59 6.0 14 0.0
Paper Cup 58 11 18 0.0
Coffee pot 73 9.0 2.0 0.0
Average 59 9.0 12 0.0

A side-effect of the proposed approach is the possible
existence of false positive areas, which might lead to wrong
conclusions about the grasp stability. As indicated by the
experimental results, one possible solution to this problem
is to shift the original grasping points towards the centers of
their respective contact regions. Also, Roa and Suárez [23]
recently investigated the influence of uncertainties in the ICR
computation analytically, and suggest to choose a conserva-
tive friction model in order to obtain valid regions.

Another solution suggested by the experimental results is
to select prototype grasps of relatively high quality. This can
be done utilizing grasps from a grasp taxonomy or grasps
demonstrated by a human teacher [19].
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