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Abstract— We propose a constraint-based approach to ad-
dress a class of problems encountered in Combined Task
and Motion Planning (CTAMP), which we call kinematically
constrained problems. CTAMP is a hybrid planning process in
which task planning and geometric reasoning are interleaved.
During this process, symbolic action sequences generated by
a task planner are geometrically evaluated. This geometric
evaluation is a search problem per se, which we refer to as
geometric backtrack search. In kinematically constrained prob-
lems, a significant computational effort is spent on geometric
backtrack search, which impairs search at the task-level. At
the basis of our approach to address this problem, is the
introduction of an intermediate layer between task planning
and geometric reasoning. A set of constraints is automatically
generated from the symbolic action sequences to evaluate, and
combined with a set of constraints derived from the kinematic
model of the robot. The resulting constraint network is then
used to prune the search space during geometric backtrack
search. We present experimental evidence that our approach
significantly reduces the complexity of geometric backtrack
search on various types of problem.

I. INTRODUCTION

In order to be autonomous in performing everyday-life
tasks such as setting or cleaning a table, preparing coffee,
etc., humanoid robotic assistants must be able to do complex
object manipulation. Performing such tasks autonomously
involves different levels of reasoning. High-level reasoning
is needed to decompose the task into a sequence of sub-
tasks which achieves the goal. At this level, reasoning is
done about causal and precedence relationships between
actions (task planning). Low-level reasoning is needed to
plan for the physical execution of each sub-task (motion
planning). Combining these two levels of reasoning leads
to a new search problem that we call geometric backtrack
search. The search space in geometric backtracking can be
very large, and therefore we concentrate on this issue in
this paper. We contribute a constraint-based approach to
reducing that search space. We begin by motivating the need
for geometric backtrack search through a concrete example
with the robotic platform Justin (Ott et al., 2006).

Consider for instance the task of stacking three cups on a
dish rack with the same orientation. The task can be carried
out in different ways, but imagine for example that the task
planner currently is evaluating the geometric instantiation
of the following symbolic action sequence: <pick cup3,

place cup3 rack, pick cup2, stack cup2 cup3,

Fig. 1. Simulation of the DLR humanoid two-arm system JUSTIN:
stacking the last cup is not possible due to kinematic constraints.

pick cup1, stack cup1 cup2>. In Fig. 1, one can
see that the left arm of the robot has almost reached full
extension. Stacking the first two cups is possible, but
placing the last cup on top of the pile with the required
orientation may fail because of the kinematic constraints
of the robot. The choice of the position and orientation of
the cup at the bottom of the pile is crucial for the success
of the last action. If the first cup is placed too far from the
robot, or with an inappropriate orientation, the sequence
of actions may not be feasible. In this case, the symbolic
plan is in principle feasible, but the geometric instantiation
chosen for the first action leads to a failure. In order to find
a solution to such problems, alternative geometric instances
for the pose of the first cup must be tried out until a
solution is found. In the present work, this is achieved by
performing geometric backtrack search, a process in which
all the combinations of geometric instances (up to some
spatial resolution) are systematically considered. We call
kinematically constrained problems the problems in which
the cause for geometric backtracking is the violation of the
kinematic constraints of the robot.

An important issue to consider in CTAMP is the case
where a symbolic action sequence has to be rejected,
because there is no way to instantiate it geometrically.
This occurs often in CTAMP, because the task planner
cannot reason about geometric aspects, therefore it often
generates action sequences which are logically valid, but
geometrically infeasible. Ideally, the low-level (geometric)



reasoning should reject infeasible action sequences as fast as
possible, so that the high-level (task planner) could carry on
searching for alternative action sequences, until a valid plan
is found. Unfortunately, proving that a search problem has
no solution is often more difficult than finding a solution,
because it requires to explore the search space exhaustively.
The approach proposed in this paper addresses this issue by
allowing, in many cases, to bypass exhaustive search with
a mere consistency check.

This paper does not present a new scheme for combining
task and motion planning, but it describes a constraint-based
approach for pruning the search space explored during geo-
metric backtrack search. A constraint network is automati-
cally built from the symbolic action sequence to be evaluated
and from the geometric characteristics of the robot. This
constraint network is then used during geometric backtrack
search to remove inconsistent actions or inconsistent sets
of actions, thus reducing the search effort. In some cases,
the constraint network allows us to reject an action sequence
for which no consistent geometric instantiation exists, hence
avoiding to perform exhaustive geometric search on that
sequence and speeding up the whole search process. The
approach presented in this paper makes several simplifying
assumptions:

• constraints are expressed at grasp and release positions
only, not for the motions in-between;

• at grasp and release positions, the gripper(s) of the
robot and the manipulated object(s) are constrained to
be aligned about an a priori given finite set of reference
axes.

• although the constraints used for pruning are expressed
as continuous ranges, the space of geometric choices
for the robot’s actions is discretized; and

• all the reported experiments were conducted in simu-
lation, assuming exact knowledge of objects poses and
perfect execution of the robot’s motions; simulation is
acceptable here, since the goal of the experiments is
to evaluate the effect of constraints on the planning
process.

The rest of this paper is organized as follows. In the
next section, we provide the reader with basic notions in
task and motion planning, and present some of the related
literature. In sections III and IV, an overview of the approach
is presented, and the notation is introduced. Sections V and
VI describe in detail how the constraints are generated,
and which algorithms have been developed. The time-
complexity analysis of these algorithms is given in section
VII. Finally, we report on the experimental evaluation of the
proposed approach in section VIII.

II. BACKGROUND AND RELATED WORK

A. Task planning and motion planning

The scope of this paper is neither task planning nor
motion planning, hence, we limit ourselves to informal
definitions of task planning and motion planning, as a back-

ground for reading the next sections, and provide references
for further reading.

1) Task planning: Task planning has to do with causal
reasoning, i.e., reasoning about the preconditions and effects
of the different actions an agent can take in order to reach
a certain goal. These actions are an abstraction of the real-
world actions, hence the geometric aspects are not repre-
sented. Symbols are used to represent predicates (relations)
and constants of the application domain. A symbolic state
can be represented by a conjunction of atomic statements,
e.g.,
on cup1 table

empty right hand

grasped cup2 left hand

. . .

An operator is a triplet 〈A(p1, . . . , pn), pre, eff 〉 where
• A is an action symbol;
• p1, . . . , pn are the parameters of the action;
• pre is a logical expression called precondition;
• eff is a set of literals called effects.

A planning domain is a set of operators. A planning
problem is defined by a planning domain, an initial state,
and a goal state which are described using predicates and
a set of symbols called constants. A plan is a sequence of
instantiated operators which transforms the initial state into
the goal state. We illustrate these terms with an example:

• a planning domain:
action: PICK ?hand ?grasp type ?obj

pre: empty ?hand

eff: grasped ?obj ?hand, not(empty ?hand)

action: PLACE ?hand ?obj ?location

pre: grasped ?obj ?hand

eff: empty ?hand, at ?obj ?location

• a planning problem:
initial state: at cup1 sink, grasped cup2 left hand,

empty right hand

goal state: at cup1 table

constants: left hand, right hand, cup1, cup2,

table, sink

• a plan:
PICK right hand cup1

PLACE right hand cup1 table

or, using the left hand:
PLACE left hand cup2 sink

PICK left hand cup1

PLACE left hand cup1 table

Many techniques exist for task planning (Nau et al.,
2004), some of which go beyond causal reasoning, e.g.,
taking into account temporal constraints or resource usage.
Some planners can deal with numerical values and, by
assigning costs to actions, solve problems involving dis-
tances and/or robot motions, but no task planner can deal



with the fine-grained geometrical representations which are
needed for solving robot manipulation tasks. In order to
do this, a task planner should call a specialized reasoner
(motion planner) which assesses the feasibility of symbolic
actions using its own algorithms and representations. Next,
we describe the motion planning problem.

2) Motion planning: The motion planning problem con-
sists in finding a collision-free path (a sequence of configu-
rations) between a given initial configuration and a desired
final configuration (see LaValle (2006) for an comprehensive
review of motion planning techniques). A configuration
generally represents the pose of one or several rigid bodies
in space. It can represent the poses of a fleet of vehicles,
as well as the angular values of the individual joints in
a robotic manipulator. In problems where objects can be
manipulated, a configuration can be defined as the pose
of the robot together with the poses of the manipulable
objects. In the present work, a humanoid robot is used,
and the term configuration denotes the poses of all objects
to be manipulated and the angular values of joints of both
manipulators of the robot. The motion planning algorithms
we use operate in the joint space of each manipulator.

Motion planners cannot do task planning, since they
operate in the configuration space of the robot. How-
ever, manipulation planning algorithms (for instance Siméon
(2004)) can produce plans in which the robot picks, places,
and re-grasps several times an object until it can place
it in the desired pose. However, task planning is needed
for solving tasks where some actions have non-geometric
effects, e.g., charging the battery of the robot, calling an
elevator, switching on the light, taking a picture, etc. An
example of such task is given in section VIII: filling a glass
(experiments 3 and 6). This task cannot be specified only
in terms of an initial and final configuration, otherwise the
liquid may be poured on the hand that holds the glass, or
the liquid may be poured on the table before the glass is
set in a correct position. The order in which the steps are
performed matters, therefore the sequence of actions needs
to be computed using task planning techniques. For this
reason, planners which can reason on both levels have been
developed. We describe some of them in the next section.

B. Related work

Recently, several CTAMP approaches were proposed.
A common type of approach consists of a task planner
steering the search, while a geometric reasoner is called to
geometrically instantiate the symbolic actions. In SAHTN
(Wolfe et al., 2010) for example, a hierarchical planning
approach is used, and the geometric solutions to similar sub-
problems are cached in order to avoid redundant geometric
computations. In Kaelbling and Lozano-Pérez (2011), a
hierarchical approach is also used. Thanks to geometric sug-
gesters, the planner can commit early on geometric choices,
which reduces the search space and allow them to address
large problem instances. In Karlsson et al. (2012), the focus
is on reconsidering previous geometric choices, through

a systematic geometric backtracking process. In Dornhege
et al. (2009), an extension of PDDL1 is proposed to handle
calls to external reasoners, hence keeping the soundness and
completeness properties of existing planners (under strict
assumptions on these external reasoners). In Guitton and
Farges (2009) the symbolic operators description is also
augmented, and geometric constraints are proposed as a
generic interface between symbolic and geometric levels.
A central issue in CTAMP (which is not addressed in this
article) is how to use information from the geometric level to
guide the search at the task level. This issue is addressed in
de Silva et al. (2013), where a set of geometric predicates
(e.g., reachability or visibility of objects) are dynamically
computed from the geometric state during task planning.
This allows them to deal with indirect effects of actions,
and opens for potentially richer domains. The approach
of Srivastava et al. (2013) also deals with this issue. The
domains of continuous variables are represented by a finite
set of Skolem symbols. Through re-planning, these symbols
are used to provide feedback to the task planner why a
particular action failed.

In another type of approach, the planner works mainly
on a motion planning problem, while the task planner
is used as a heuristic. In Plaku and Hager (2010) for
instance, SamplSGD consists of a motion planner handling
differential constraints guided by a task planner. A utility
function provides a loose interaction between the symbolic
and the geometric levels. Similarly in aSyMov (Cambon
et al., 2009), the task planner FF (Hoffmann and Nebel,
2001) guides a manipulation planner based on the com-
position of several probabilistic roadmaps (PRMs), which
can deal with complex problems involving the cooperation
of heterogeneous robots. Another less common type of
approach states the symbolic planning problem in terms of
logic programming. In Choi and Amir (2009), a sampling-
based motion graph is used to build an action theory, from
which an abstract solution plan is extracted. In the same
vein, the action language C+ (Erdem et al., 2011) or ASP
programs (Aker et al., 2012) are used to encode the planning
problem into a logic program. The failures detected at
the geometric level are fed back in the form of logical
constraints to the causal reasoner to find alternative plans
that are free of these failures. The advantage of this approach
is the expressiveness of the formalisms which can handle
concurrency, non-deterministic effects, ramifications, etc.

Note that these CTAMP approaches are in general in-
complete. The motion planners they employ are incomplete,
and as a large number of motion planning problems must
be solved, a limited amount of time must be assigned to
each. Often, continuous geometric choices such as target
poses for objects have to be discretized. In addition, a
number of approaches, such as Dornhege et al. (2009),
do not support reconsideration of geometric choices of
previous actions. Finally, several approaches employ HTN
task planners which may be incomplete depending on how

1Planning Domain Definition Language



Fig. 2. Geometric instances of symbolic actions (A1, A2, . . . , An) are
sampled. Task constraints (i) and kinematic constraints (ii) are used to prune
out some geometric instances, which reduces geometric backtracking.

the HTN methods are defined.
The difficulty of geometric reasoning was early pointed

out in Lozano-Perez et al. (1989) which showed that a
simple task such as pick-and-place is not trivial. Because
of the kinematic constraints, the task often needs to be
decomposed into a sequence of re-grasping operations, for
which a specialized reasoner is needed, e.g., Tournassoud
et al. (1987); Cho et al. (2003). A similar issue is addressed
in the work of Pandey et al. (2012) on grasp-placement
selection under various task constraints. Different sampling-
based planning techniques have been developed to solve
problems that are more complex than mere motion planning;
for example, manipulation planning (Siméon et al., 2004),
multi-modal motion planning (Hauser et al., 2007), or plan-
ning among movable obstacles (Wilfong, 1988; Stilman and
Kuffner, 2008). These techniques combine motion planning
with discrete choices in order to explore high-dimensional
configuration spaces more efficiently. However, they can-
not address problems in which actions with non-geometric
effects are involved.

The work presented in this paper is the continuation of the
work initiated in Lagriffoul et al. (2012). Here, we describe
in more details the overall architecture and the interface with
the task planner (see next section). A strong limitation of
the previous work was that it could only deal with rotations
around the vertical axis. The present work shows that our
scheme can be extended to an arbitrary number of axes,
which makes it applicable to a wider range of problems. We
also expose a study of the time complexity of the algorithms.

III. OVERVIEW OF OUR APPROACH

A high-level view of our planning architecture is depicted
in Fig. 2. A task planner outputs a sequence of symbolic
actions. Each symbolic action can be instantiated in different
ways at the geometric level, e.g., for the action place cup1

table, different positions and orientations on the table can
be considered (more details can be found in Karlsson et al.
(2012)). Sampling is required to generate a set of candidate
geometric instances, from which we search for one which:

• is collision free;
• has an inverse kinematic solution;
• is reachable from the previous geometric instance (a

collision-free path exists).

In the introduction, we have identified geometric back-
track search as necessary in order to ensure the complete-
ness of this process. We focus on kinematically constrained
problems, which require extensive search in the space of
geometric instances. In order to reduce this search space,
geometric instances are pruned out using a filtering tech-
nique based on linear programming. Linear constraints are
automatically generated (i) from the symbolic sequence of
actions (task constraints) and (ii) from the geometric model
of the robot (kinematic constraints). These constraints are
conservative, i.e., they can safely be used for pruning out
infeasible sampled geometric instances. In this way, only the
geometric instances that are within the feasible set have to
be checked against inverse kinematics, collision detection,
and motion planning.

The present work focuses on pruning the geometric
search space using constraints generated from a sequence
of symbolic actions. Note that this technique can be applied
on partial plans as well, i.e., during task planning. Doing
so entails additional considerations though, such as posting
and rolling back constraints during symbolic backtracking,
which would make the analyses proposed in sections VII and
VIII tedious and less precise. We refer the reader interested
in this issue to Bidot et al. (2013), where we report on
our work on tightly integrating constraint reasoning and
task planning. Next, we describe in more details some
requirements put on the planning domain, and illustrate
through an example how symbolic and geometric levels
interact.

A. Requirements on the planning domain

In this section, we describe how we implemented the
planning domain, so that the symbolic plan generated by
the task planner contain enough information to be converted
into a set of constraints. This is achieved by using coarse
geometric representations. For instance, we use the symbols
Ox1, Oy1, Oz1 to represent the fact that an object has
its main axis aligned with respectively the x, y, z axes of
the world frame, and Ox2, Oy2, Oz2 denote alignment
with the opposite axes −x,−y,−z (e.g., upside-down is
represented by Oz2). The grasp type (side, top, bottom)
and the manipulator used (left, right) are also represented
at the symbolic level, hence decided by the task planner.
However, the exact orientation of the TCP relative to the
object during grasping, or position on the location during
placing, are determined by the geometric reasoner, using
a deterministic uniform sampling procedure based on Van
der Corput sequences (Kuipers and Niederreiter, 1974). We
define a minimal set of parameters for the actions:

A pick-like action (pick, pick-regrasp) must be at least
parametrized by:
• side: left hand, right hand;



• grasp type: side, top, bottom, ...
• current coarse object orientation: Ox1, Ox2, Oy1, ...
• object.

A place-like action (place, place-regrasp, stack)
must be at least parametrized by:
• side: left hand, right hand;
• grasp type: side, top, bottom, ...
• target location;
• target coarse object orientation: Ox1, Ox2, Oy1, ...
• object.

To illustrate our action parametrization scheme with an
example, consider the sequence of actions depicted in Fig. 3,
where the robot grasps a cup with the left manipulator, re-
grasps it with the right manipulator, and places it on the tray
located on the table:

Fig. 3. Example of action sequence, with the corresponding coarse object
orientations used by the task planner.

The corresponding symbolic action sequence is:
pick left hand top Oz1 cup1

place regrasp left hand top Oy1 cup1

pick regrasp right hand bottom Oy1 cup1

place right hand bottom tray Oz2 cup1

In other words, the task planner is not aware of the exact
orientation of objects: it only knows if an object is aligned
with the x, y, or z axis, and in which direction. Similarly
for grasps, the task planner reasons about the type of grasp
without knowing the exact orientation of the TCP relative
to the object. The exact angular values are handled at
the constraint level (see section V). Next, we explain how
these coarse geometric representations are used by the task
planner for high-level geometric reasoning, and how they are
used in the process of converting a symbolic action sequence
into a set of linear constraints for quantitative geometric
reasoning.

B. Task-motion planning interaction

In order to understand the relevance of geometric evalua-
tion (instantiation / rejection) of symbolic action sequences,
it is helpful to see this problem in the context of CTAMP,
i.e., in the task-motion planning loop. We roughly sketch
an example showing why the symbolic level requires to
repeatedly perform such evaluations. Consider for instance
that you assign a robot the following task: place cup1 on

the tray, upside-down. A solution to achieve this task is
the plan depicted in Fig. 3 (left). But imagine that the cup
was already upside-down, then this plan does not work,
instead, the table has to be used as a temporary location
to re-grasp the cup (because the tray is not reachable by the
left manipulator):

pick left hand bottom Oz2 cup1

place left hand bottom Oz2 cup1 table

move away left hand

pick right hand bottom Oz2 cup1

place right hand bottom tray Oz2 cup1.

If the cup is already upside-down, and the tray is reachable
by the left arm, then two actions are sufficient:

pick left hand bottom Oz2 cup1

place left hand bottom Oz2 cup1 tray

If the tray is reachable by the left arm, not reachable by the
right arm, and the cup is initially in upright position, then
the right arm and the table have to be used in order to flip
the cup:

pick left hand top Oz1 cup1

place regrasp left hand top Oy1 cup1

pick regrasp right hand bottom Oy1 cup1

place right hand bottom table Oz2 cup1

pick left hand bottom Oz2 cup1

place left hand bottom Oz2 cup1 tray

Similarly, we could think of 4 symmetric plans (in-
terchanging the left hand and right hand parameters),
meaning that at the symbolic level, there are 8 candidate
plans to solve this simple problem. This example gives
an insight about the complexity of planning at the task
level. Essentially, the number of candidate plans grows
exponentially with the number of objects and the number of
actions. For the task of moving 3 cups, several thousands of
plans are possible, because the actions can be interleaved in
different ways, and the order in which cups are manipulated
can be changed. Hence, without a technique to evaluate these
action sequences efficiently at the geometric level, search at
the task level becomes intractable.

IV. NOTATION

A. Representing the poses of rigid bodies

For collision detection and motion planning, the pose of
a rigid body is generally represented using a homogeneous
transformation matrix, in which the orientation is repre-
sented by a rotation matrix. However, we want to model
our problem with linear constraints only (see next section)
in order to take advantage of linear programming techniques.
We represent the orientation of a rigid body as the rotation
of a reference frame about a reference axis. By constraining
the rotation in this way, the orientation can be expressed
using one angular value, on which constraints can be more
easily formulated. Issues with wraparound of angles remain
though, which we address in section VI-D. Translations are
represented as usual.



Fig. 4. The different components of the hybrid pose representation, from
left to right: the object template frame Op, the reference axis and angle
of rotation, and the translation in the world frame pi.

For conciseness of notation, in some cases, we use x =
(x1, . . . , xn) to denote the elements of a column vector x.
All coordinates are expressed in the world frame. The pose
of a body oi will be noted (pi,Op,uk, γi), where pi =
(xi, yi, zi) ∈ R3 represents the translation of the ith body.
Op represents an orthonormal body-fixed frame, which we
define as object template frame, uk ∈ R3 a unit vector
which we define as reference axis, and γi ∈ R an angle of
rotation around the axis uk.

The pose of the body in the world frame is parametrized
by rotating the frame Op about uk with the angle γi,
and translating it by pi (see Fig. 4). Op belongs to a
predefined set of body-fixed frames, and uk is chosen
among a predefined set of axes. Object template frames
correspond to orientations of interest for an object class,
i.e., stable resting orientations, or orientations used during
re-grasping operations. Each template frame is associated to
a reference axis about which it can be rotated, but we use
different indexes because different template frames can be
associated to the same axis.

The same representation is used for the poses of the
TCPs of the robot. In our setup, the robotic platform
Justin has two TCPs, left and right, which we represent by
(`,Rp,uk, γ`) and (r,Rp,uk, γr) respectively. Similarly,
TCP template frames correspond to orientations of interest
for the TCPs, i.e., orientations used for pick, place, and re-
grasping operations, for various types of grasps. For clarity
in the rest of this article, we will simply represent the pose
of an object oi by (pi, γi), and the pose of right and left
TCPs respectively by (r, γr) and (`, γ`).

The limitation of this representation is that all possible
orientations cannot be represented, since finite sets of tem-
plate frames and reference axes are used. However, many
man-made objects have a default stable upright position,
which can naturally be used as a template frame associated
to the z axis. Hence, the limitation of this representation
is not really for pick and place operations, but rather for
re-grasping operations, for which limiting the set of refer-
ence axes may compromise the feasibility of re-grasping.
Although this representation is limited, it allows us to
formulate linear constraints on the orientations of TCPs and
objects, and speed up the planning process. This choice
is therefore a trade-off between geometric resolution and
planning performance, which is discussed in the conclusion.

Fig. 5. Representation of symbolic states and stages of operation.
Depending on how a symbolic action is performed, a symbolic state
corresponds to many geometric instances.

B. Representing actions and states

Let 〈A1, . . . , An〉 be a sequence of symbolic ac-
tions, e.g., pick left bottom Oz2 cup1, place left

bottom Oz2 cup1 table, etc. At the geometric level, a
symbolic action Aj can be performed in various ways, e.g.,
a pick action can be performed with different orientations
of the TCP, a place action can result into different posi-
tions/orientations for the object. We denote the geometric
instantiation of a symbolic action Aj by ak, k ∈ {1, . . . , p},
where p depends on the type of action and the resolution
used for sampling (see section VII-A). We denote by Sj

the symbolic state resulting from applying the symbolic
action Aj on the previous symbolic state (see Fig. 5). We
consider m rigid objects. The ith object is denoted by oi,
i ∈ {1, . . . ,m}. The position of object oi in state Sj (i.e.,
after action Aj has been completed) is denoted by p

(j)
i , and

its orientation, by γ(j)i :(
p
(j−1)
i , γ

(j−1)
i

)
Aj−−→

(
p
(j)
i , γ

(j)
i

)
.

Hence, a sequence of n actions 〈A1, . . . , An〉 corresponds
to a sequence of poses for all m objects:

〈A1, . . . , An〉 →

〈 (p
(0)
1 , γ

(0)
1 , . . . ,p

(n)
1 , γ

(n)
1 )

...
(p

(0)
m , γ

(0)
m , . . . ,p

(n)
m , γ

(n)
m )

〉
.

Note that (p
(j−1)
i , γ

(j−1)
i ) = (p

(j)
i , γ

(j)
i ) when object oi is

not manipulated during action Aj . We define a geometric
instance, or configuration as a set of values representing
the poses of all objects, and the configurations of both
manipulators (denoted by c` and cr):

c = {p1, γ1, . . . ,pm, γm, c`, cr}. (1)

Symbolic actions on objects are meant to be applied using
the robotic system Justin (Ott et al., 2006). At the jth

symbolic state, the pose of the TCP of the right (resp. left)
manipulator of Justin will be denoted by (r(j), γ

(j)
r ) (resp.

(`(j), γ
(j)
` )). For example, consider the following sequence

of grasp (G) and place (P ) actions:



states So S1 S2 S3 S4 S5 S6

actions A1 A2 A3 A4 A5 A6

object o1 G
(1)
1 P

(2)
1 · · · ·

object o2 · · G
(3)
2 · P

(5)
2 ·

object o3 · · · G
(4)
3 · P

(6)
3

R. hand X X X · X ·
L. hand · · · X · X

As a result of the first symbolic action A1 = G
(1)
1 , o1 is

grasped by the right hand, resulting in the first symbolic
state. Note that (p

(1)
1 , γ

(1)
1 ) = (p

(0)
1 , γ

(0)
1 ) as the object is

not yet moved. The second action A2 = P
(2)
1 places o1 at

(p
(2)
1 , γ

(2)
1 ) 6= (p

(1)
1 , γ

(1)
1 ) since the object has been moved.

During the remaining stages o1 is not acted upon, and hence
its pose remains unchanged. At the 4th symbolic state, Justin
has grasped o2 and o3 in its right and left hand, respectively,
and placed them, during actions A5 and A6, at positions p(5)

2

and p
(6)
3 , with orientation γ(5)2 and γ(6)3 , respectively.

V. GENERATING THE CONSTRAINTS

This section describes the constraints which are generated
from the symbolic plan (task constraints) and from the
geometric model of the robot (kinematic constraints). We
emphasize here that these constraints only refers to what
is happening at grasp and release positions, not during the
motions in between.

A. Grasp Constraints CG
Grasp constraints represent the possible relative positions

of the TCP with respect to the object when the object is
grasped (or released). In case of a top-grasp (or bottom-
grasp) the TCP remains in a small region situated roughly
above (or below) the object (see Fig. 6). In case of a side-
grasp, the TCP is situated along a circle centered on the
z axis of the object, which can be bounded by a square
region using linear constraints. Note that alternative grasp
types can be handled, provided that the grasp constraints
associated with each object of interest define a polyhedral
region. Being inside such a region does not guarantee a
feasible grasp (there may be collisions between the fingers
and the object). However, being outside guarantees that the
grasp cannot be executed, and allow us to safely prune out
such configurations.

Fig. 6. Grasp constraints for a top-grasp (left) and a side-grasp (right).

Using the notation in Fig. 4, grasp constraints can be
formulated using two parameters:
• δ, the distance between the TCP and the plane (u, v);

• ε, the orthogonal distance between the TCP and w.
The grasp constraint in the frame of the object at state sj

can be written as a linear inequality (for the right TCP):

Ar(j) ≤ b(j)

where

A =

[
I

−I

]
b(j) = (ε, ε, δ, ε, ε,−δ).

In order to express this constraint in the world frame, it has
to be transformed according to the translation p

(j)
i and the

rotation matrix Q
(j)
i of the object oi:

AQT
i (r(j) − p

(j)
i ) ≤ b(j).

Considering Fig. 6, we observe that the polyhedral region
representing the grasp constraint does not depend on the
exact orientation of the object, but rather on the direction of
its main axis. Hence, we can replace Q

(j)
i by the constant

O(j)
p (the object template frame) without changing the

constraint. The constraint can then be written:

AO(j)T
p (r(j) − p

(j)
i ) ≤ b(j).

In the case of non-cylindrical grasps, for example, we
can deal with grasp constraints related to an object, if they
define a polyhedral region for the TCP around the object.
Consider for instance grasping a cup by the handle: one
could use the same template frame as for a side-grasp (albeit
using different finger configurations) and a larger ε value,
although the constraint would be relaxed compared to a
top-grasp, because the corresponding polyhedral region is
larger. However, if the grasp-frame cannot be represented
as a rotation of one of the TCP template frames about
one of the reference axes, kinematic constraints cannot be
formulated, because no associated kinematic map can be
used (see section V-E).

B. Transfer Constraints CT
Transfer constraints occur each time a place-like action

is executed. When an object is transferred between state
sj and state sq , the object template frame and the angle of
rotation (possibly) change. A new grasp constraint is written
for state sq in order to represent this:

AO(q)T
p (r(q) − p

(q)
i ) ≤ b(q).

In addition to this, we can express the fact that the object
has rotated by the same amount as the TCP:

γ(q)r − γ(j)r = γ
(q)
i − γ(j)i , (2)

where j denotes the state index during which oi was grasped
prior to its release during state sq . In order for this relation
to remain consistent even when the axis of rotation changes
between state j and state q, object template frames and TCP
template frames must be constructed consistently, meaning
that the same rotation is applied to all template frames when



changing axis. For instance, when changing from the axis
(0, 0, 1) to the axis (0, 1, 0), one always uses the rotation of
angle π/2 about axis (0, 0, 1), although other rotations are
possible.

C. Placement Constraints CP
This constraint represents the set of all possible relative

stable positions of a manipulable object at/in a fixed lo-
cation. This constraint applies to the translation part of the
object pose pi. We assume a flat surface, but the formulation
can be easily generalized to a volume.

Fig. 7. Placement constraint for the action place right top table
Oz1 cup1

Assuming that the sizes of objects are known, we can
formulate the following constraint in the frame of the
location:

Ap
(j)
i ≤ cloc

where

cloc = (0, ysize , zsize , xsize , 0,−zsize).

The values of the parameters used in cloc may change
according to the object template frame used. For instance, if
the cup is upside-down, zsize will be automatically replaced
by zsize +cup.zsize . In order to get this constraint expressed
in the world frame, it has to be transformed according to the
translation tloc and the rotation matrix Rloc of the location:

ART
loc(p(j) − tloc) ≤ cloc .

D. Stack Constraints CS
A stack constraint is similar to a placement constraint,

except that the region where the object is allowed to be in
is reduced to a single point. For some classes of objects,
a constraint on the orientation is added because the objects
need to have the same orientation in order to be stacked:

γ
(q)
1 = γ

(j)
2 , (3)

where q denotes the last state index during which o1 was
manipulated, and j is the state index during which o2 is
stacked on o1. Specifying constraints involving equality of
angular values introduces a problem related the periodicity
of angles. Hence, equation (2) is not sufficient to represent
all the values that satisfy the stack constraint. This problem
is addressed in detail in section VI-D .

E. Kinematic Constraints CK
These constraints are the core of our approach. They

are important for manipulation tasks because they express
the relationship between the position of the TCP r in the
workspace and its possible range of rotation. This relation-
ship is non-linear and complex to compute. We approximate
it conservatively using linear constraints. In order to find
a linear approximation of these constraints, we compute a
set of kinematic maps off-line, using a similar procedure
to Zacharias et al. (2007). The workspace of the robot is
discretized into a 3-dimensional grid, and for each cell, the
existence of an inverse kinematic (IK) solution is tested for
all possible rotations of a TCP template frame around its
associated reference axis with 0.1 rads discrete steps (see
Fig. 8).

Fig. 8. Examples of left TCP template frames with their associated
reference axis.

From this data, we build two maps γmin and γmax , which
respectively associate the position r of the TCP to a lower
and upper bound for γr. This procedure is repeated for each
pair (TCP template frames, reference axis), so that each such
pair is associated with two maps:

γmin(Rp,uk) : (rx, ry, rz) 7→ γmin
r

γmax (Rp,uk) : (rx, ry, rz) 7→ γmax
r .

These maps tell us that if γr ∈
[
γmin
r , γmax

r

]
, then Rp

rotated by γr about uk may accept an IK solution, and that
if γr /∈

[
γmin
r , γmax

r

]
, then we know for sure that no IK

solution exists. In order to extract linear constraints from
kinematic maps, we define two functions:

hmax (r(j), r(j))→ (n
(j)
ub ,m

(j)
ub )

hmin(r(j), r(j))→ (n
(j)
lb ,m

(j)
lb ),

where r(j) and r(j) are respectively a lower and upper
bound for the variables r(j)x , r

(j)
y and r

(j)
z , i.e., a region of

space for which we want to approximate these constraints.
This linear approximation remains correct only for small
regions of space, but it is sufficient to approximate the kine-
matic constraints at grasps and release positions, because the
position of the TCP is then bounded by a grasp constraint.
The bounds (rx and rx in Fig. 9) are used to select a subset
of points in γmax and γmin , from which a linear regression
is used in order to identify the unit normals (n(j)

ub ,n
(j)
lb )

and offsets (m(j)
ub ,m

(j)
lb ) of two bounding hyperplanes (see

Fig. 9). Then, these parameters are used to formulate a
constraint which gives the range of possible rotation of the
TCP during an action Aj :



Fig. 9. Schematic 2-d view of the 4-dimensional linear outer approxima-
tions of a kinematic map by the functions hmin and hmax

[
n

(j)T
lb mlb

] [
r(j)

1

]
≤ γ(j)r ≤

[
n

(j)T
ub mub

] [
r(j)

1

]
,

which we compactly denote by:

f
(j)
min(r(j)) ≤ γ(j)r ≤ f (j)max (r(j)).

Note that we assume that the map is smooth between
the sample points of the grid. If this is not the case, some
solutions may be ruled out. However, for the experiments
conducted in this paper, the maps were built with 5 cm
spatial resolution and 0.1 rads angular resolution, and no
such cases were observed.

F. Other types of constraints

So far, we have introduced five types of constraints
which are used in most common manipulation tasks. We
could think of other constraints for other types of action
like screwing / unscrewing, opening a door, or turning a
knob. Similarly for the placement constraints and the stack
constraints introduced in the previous sections, we presented
one possible way of modeling them, but one could think
of a more elaborate model in which, e.g., the object and
its location are not aligned along the same axis. The only
requirement is that these constraints should model the result
of the action, not what happens during the action. Complex
actions can be modeled more precisely by splitting them into
sub-actions. Pouring a liquid into a recipient is an example
of action which requires such splitting. A brief description
is given in section VII-C.

G. Example of constraint generation

An important feature of our scheme is that all the con-
straints described above are generated automatically from a
given sequence of symbolic actions (c.f. Fig. 2). Next, we
show how this can be done through an example. Consider
for instance the following two-actions sequence:

pick right hand top Oz1 cup1

place right hand top table Oz1 cup1

This action sequence results in three states: the initial state
s0, the state resulting from the first action s1, and the

state resulting from the second action s2. Six variables are
automatically created which represent the poses of objects
and manipulators. In this example, the pose of a cup is
denoted by p

(j)
cup , γ

(j)
cup , and the pose of a right manipulator

by r(j), γ
(j)
r , where j is the index of the state. After

the pick action, only the manipulator has moved, so no
variables are created for the cup. After the place action,
both the manipulator and the object have moved, so two sets
of variables are created. All the constraints of the problem
are formulated with these variables:

state variables

s0 p
(0)
cup γ

(0)
cup

s1 r(1) γ
(1)
r

s2 p
(2)
cup γ

(2)
cup r(2) γ

(2)
r

The pick action leads to the creation of a grasp constraint
and a kinematic constraint:

AO(1)T
p (r(1) − p(0)

cup) ≤ b(1)

f
(1)
min(r(1)) ≤ γ(1)r ≤ f (1)max (r(1)),

where A is constant, the object template frame O(1)
p is

known from the symbolic parameters Oz1 and cup1, and
b(1) which parametrizes the grasp region is known from
the symbolic parameters right hand, top, and cup1. fmin

and fmax are the linear approximations of the kinematic
constraints extracted from a kinematic map (see previous
subsection). Which map to use is determined by the para-
meters right hand, top, and Oz1.

Similarly, the place action automatically generates a
transfer constraint (grasp constraint + angular constraint, see
equation (2)), a placement constraint, and again, a kinematic
constraint:

AO(2)T
p (r(2) − p(2)

cup) ≤ b(2)

γ(2)r − γ(1)r = γ(2)cup − γ(0)cup

ART
table(p(2)

cup − ttable) ≤ ctable

f
(2)
min(r(2)) ≤ γ(2)r ≤ f (2)max (r(2)).

Like for the pick action, O(2)
p and b(2) are known from

the symbolic parameters of the place action, and Rtable ,
ttable , and ctable are constants.

We have shown how a pick-place sequence is automat-
ically converted into six linear constraints on 16 variables
(p, r ∈ R3). These constraints delimit how the two symbolic
actions can be geometrically instantiated. In the next section,
we explain how these constraints are used to prune the
search space of geometric instantiations.

VI. SEARCH PROCEDURE

The geometric constraints of the problem are formulated
as a set of linear inequalities and equalities. The kinematic
constraints CK have been formulated in terms of lower and
upper bounds on the actual capabilities of the manipulator.
Consequently, the set of constraints is conservative, i.e., if



a solution exists, it must belong to the feasible set defined
by the constraints. Conversely, if the constraints result in
an empty feasible set, the problem has no solution, which
implies that one can safely prune search at this point. Note,
however, that

• we still have to search the feasible set for a sequence
of geometric instances which solves the problem;

• we still have to do motion planning to find collision-
free paths connecting grasp and release positions.

For these reasons, instead of searching for a single solution,
we use the constraints to tighten the bounds of a set of
intervals which contain all the solutions to the problem. We
define the vector of all the variables of the problem:

v = (v1, v2, . . . , vN ),

to which we associate a domain

D = 〈[v1, v1], [v2, v2], . . . , [vN , vN ]〉,

where each variable vi has associated bounds [vi, vi]. The
set of all constraints of the problem

C = {C(j)G , C(j)T , C(j)P , C(j)K , C(j)S }, j ∈ {1, . . . , n}

can be expressed as

Pv ≤ d (4)
Qv = e, (5)

where (4) and (5) represent respectively the inequality and
equality constraints of our problem.

A. Narrowing intervals with the constraints

Algorithm 1: FilterDomain

Function FilterDomain(D, C)
input : D: a domain

C: a set of linear constraints

1 ε = minimal domain reduction

2 D′ = D
3 repeat
4 D = D′

5 UpdateKinematicConstraints(C,D)
6 for i← 1 to N do
7 minimize

v
vi, subject to Pv ≤ d,Qv = e

8 vi
′ ← max(vi, v

?
i )

9 maximize
v

vi, subject to Pv ≤ d,Qv = e

10 vi
′ ← min(vi, v

?
i )

11 until Dist(D,D′) ≤ ε or D′ = ∅
12 return D′

The algorithm presented in this section was inspired by
the constraint satisfaction literature and bound propagation
literature (Davis, 1987; Lhomme, 1993; Jaulin, 2000). Since

our problem is formulated with linear constraints and is
convex (see equations (4) and (5)), we can solve it using
a global filtering algorithm (adapted from Lebbah et al.
(2002)). The bounds of the intervals are found by solving
several linear programs (LP) in order to find the minimum
(resp. maximum) value v?i of each variable vi. v?i is then
used to update the lower (resp. upper) bound of vi (lines 8
and 10). The values are updated in a temporary copy of the
domain D′ = 〈[v1′, v1′], [v2′, v2′], . . . , [vN ′, vN ′]〉, which is
used to measure how much the intervals have shrunk after
each iteration. This is done by the Dist function (line 11),
which returns the average of the differences between upper
and lower bounds in D and D′. The process is repeated until
the domain does not change more than a predefined ε value.
The result is a domain in which the intervals are narrowed
down with respect to the constraints, or ∅ if an inconsistency
is detected during the resolution of an LP.

We have modified the original algorithm
(Lebbah et al., 2002) by adding the function
UpdateKinematicConstraints(C,D) in the main
loop (line 5). Indeed, after each iteration, the intervals may
shrink. If the intervals representing the TCP positions are
reduced, it is meaningful to refine the kinematic constraints
using the functions hmin and hmax in order to get a tighter
linear approximation of the real problem.

Refining the kinematic constraints while filtering the
domains is a very efficient process. Let us illustrate this
with a numerical example for a pick action. Initially, the
problem consists of four variables representing the position
of the object cup located at (0.6, 0.25, 0.1) with orientation
0 rad.

v = (x(0)cup , y
(0)
cup , z

(0)
cup , γ

(0)
cup)

D = 〈[0.6, 0.6], [0.25, 0.25], [0.1, 0.1], [0, 0]〉.

The lower bounds are equal to the upper bounds because the
values of the variables are determined. The pick action leads
us to the creation of 4 new variables for the TCP, which are
initially assigned arbitrarily large intervals:

v = (x(0)cup , y
(0)
cup , z

(0)
cup , γ

(0)
cup , r

(1)
x , r(1)y , r(1)z , γ(1)r )

D = 〈[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[−10, 10], [−10, 10], [−10, 10], [−10, 10]〉.

The pick action also generates grasp constraints CG and
kinematic constraints CK . In this example, we assume a
top-grasp and an object in an upright position. The grasp
constraint is:

r(1)x = x(0)cup

r(1)y = y(0)cup

r(1)z = z(0)cup + 0.34.

At this stage, the kinematic constraint is inaccurate, because
the domain of r(1) is arbitrarily large. Therefore, the best
approximation is given by 2 hyperplanes with constant
values equal to the max value of the map γmax and the min



value of the map γmin . In this example, we assume these
values to be respectively 2π and −2π, hence the kinematic
constraint is:

0x(1) + 0y(1) + 0z(1) − 2π ≤ γ(1)r ≤
0x(1) + 0y(1) + 0z(1) + 2π.

After the first iteration in FilterDomain, the grasp con-
straints have propagated the values of the position of the
cup to the position of the TCP, and the kinematic constraints
have updated the bounds of the variable γ

(1)
r , hence D

becomes:

D = 〈[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[0.6, 0.6], [0.25, 0.25], [0.44, 0.44], [−2π, 2π]〉.

In the second iteration, the domain of the TCP has
been reduced (to a single point), so the function
UpdateKinematicConstraints provides a tighter approx-
imation of the kinematic constraints:

3.3x(1) − 2.5y(1) + 0.1z(1) − 2.1 ≤ γ(1)r ≤
4.6x(1) − 1.1y(1) + 2.9z(1) − 1.4,

which results by propagation in tighter bounds for the
variable γ(1)r . Finally, D becomes:

D = 〈[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[0.6, 0.6], [0.25, 0.25], [0.44, 0.44], [−0.7, 2.36]〉.

Hence, in order to pick the cup, the orientation of the top-
grasp must be chosen between −0.70 and 2.36 radians.

This constraint propagation process is interesting for
longer sequences of actions, because it allows us to propa-
gate the consequences of early choices until the final actions.
It could for instance solve the stacking problem described
in the introduction, by giving an approximation of a region
on the dish rack which is appropriate for placing the first
cup, as well as bounds for its orientation.

B. Narrowing down intervals during search

In order to find a solution, we use a basic depth-first-
search algorithm, endowed with a pruning step (see al-
gorithm 2: SearchAndFilter (SAF)). When a geometric
instance is chosen (lines 4 and 5 in Algorithm 2), we check
if the variables representing it belong to their respective
intervals (line 6): this is the first level of pruning. But after
an action has been chosen (e.g., to place the cup at position
(0.7,−0.25, 0.1) with γ = π/2), the variables representing
this choice are assigned fixed values, so the corresponding
intervals can be reduced to single points (i.e., for a variable
vi, vi = vi). Then, we can filter the domains again, i.e.,
we propagate this choice to other variables through the
constraints. The other intervals will be shrunk accordingly,
which reduces even more the possibilities for further actions.
This process is repeated each time an action is instantiated,
so that intervals are shrunk as the search progresses.

Algorithm 2: SearchAndFilter

Function SearchAndFilter(c1, Seq,D, C)
input : c1: a configuration

Seq: a sequence of symbolic actions
D: a domain
C: a set of linear constraints

1 if Seq = 〈〉 then return c1
2 Action = Seq.head
3 Rest = Seq.tail

4 foreach ak ∈ geometricInstanceOf (Action) do
5 c2 = getSuccessorConf(c1, ak)

6 if c2 ∈ D then
7 D′ = assignV alues(D, c2)
8 D′ = FilterDomain(D′, C)
9 if D′ 6= ∅ then

10 feasible = pathP lanning(c1, c2)

11 if feasible then
12 s = SearchAndFilter(c2, Rest,D′)
13 if s 6= false then
14 return 〈c2, s〉

15 return false

Algorithm 2 is initially called with the initial configu-
ration, the sequence of symbolic actions, and the initial
domain filtered according to the constraints of the problem.
An action ak is chosen among the possible geometric
instances of the symbolic action Action . c2 is the result
of applying ak to c1. If this configuration belongs to the
domain, we apply the strategy described above that assigns
the values to the domain and filters it again (lines 7 and 8).
If no inconsistency appears, the motion planning algorithm
is called to check if a collision-free path exists to reach
c2. If a path exists, the function is recursively called on
c2 with the remaining actions and the shrunk domain D′,
otherwise the next action ak+1 is tried. Note that when the
configuration c2 is computed, a choice is possible among
the possible inverse kinematic solutions of the manipulator.
We choose the configuration which is the closest to c1 (with
euclidean distance), in order to ease RRT search, but we do
not backtrack on this choice, which may result in loss of
solutions. If all the actions fail, the function returns false
to the calling function via the return statement line 15.
If a final configuration is reached (line 1), the solution is
incrementally built (line 14) and returned to the main calling
function. The result is a list of configurations and paths
which are used to execute the final plan (paths are smoothed
after a plan is found, see end of section VIII-B).

Note that using a conservative filtering algorithm does not
imply that Algorithm 2 is complete. Completeness is lost
at different decision points: (i) the choice of a geometric
instance ak for an action is subject to a fixed resolution, (ii)
the choice of an inverse kinematic solution is greedy, and
(iii) the RRT path planner is itself incomplete.



C. Detecting inconsistency and pruning

One of the main problems of geometric backtrack search
is when no geometric instantiation of the action sequence
exists. This happens often during task planning, because
no geometric information is used. For instance, the task
planner may try a sequence in which the right arm of the
robot should grasp an object situated on the left side. If this
sequence is in fact infeasible, all the space of configurations
has to be explored in order to assess it, which may be
computationally expensive. The only solution to avoid this
is to impose a time limit on the backtracking process.
Unfortunately by doing this, some solutions are lost as the
time limit may be exceeded in cases in which the problem
is feasible.

With our approach however, inconsistency can be detected
before entering the backtracking procedure, while we fil-
ter the initial domain according to the constraints of the
problem. This is more efficient, since no search is required.
Inconsistency can also be exploited during search. Suppose
for instance that the problem is initially consistent, and at
some point in the search, a configuration is chosen that
makes the problem inconsistent. This will be detected during
filtering (lines 8 and 9 in Algorithm 2). In this case, we can
stop exploring this branch of the search tree, and directly
try the next configuration.

D. Dealing with the periodicity of angles

The periodicity of angular values introduces a problem
for constraints involving angular values, namely constraints
on the final orientations of objects, and stack constraints.

1) Final orientation constraint: In some problems, such
as setting the table, we may impose a constraint on the final
orientations of some objects (e.g., the cutlery). To do this,
we do not need to add a new constraint to the problem, but
we simply set the bounds of the variable representing the
orientation of the object to the desired final value. For an
object oi, we simply modify the domain as follow:[

γ
(fi)
i , γ

(fi)
i

]
= [Γgoal ,Γgoal ] ,

where fi is the index of the last state when oi was moved,
and Γgoal ∈ [−π, π] is the desired orientation. The problem
is that after several manipulations, the object can be rotated
by more than one turn, and the variable γ(fi)i can reach a
value out of the interval [−π, π] . In this case, it may happen
that the constraint network is inconsistent, while γ(fi)i is a
valid solution modulo 2π, which means that some solutions
may be lost. Suppose for instance, a cup initially oriented
with angle γ(0)cup = 2.5. Then, this object is picked and placed
with a constraint on its final orientation γ

(2)
cup = 2.5. The

transfer constraint is

γ(2)r − γ(1)r = γ(2)cup − γ(0)cup

Suppose that γ(2)r and γ(1)r are constant:

γ(2)r = 1.3 + 2π

γ(1)r = 1.3

In this example, a solution exists modulo 2π, but the
system is not consistent. One may argue that the wraparound
problem can be easily fixed by normalizing all values to the
range [−π, π], but this is not possible because γ(2)r and γ(1)r

are not constant values: they are variables bounded by two
linear functions of the position of the TCP in space (see the
kinematic constraints, section V-E), for instance:

ax(2) + by(2) + cz(2) + d ≤ γ(2)r ≤
ex(2) + fy(2) + gz(2) + h

Hence, the variables γ(2)r and γ
(1)
r depend on the values

computed in the kinematic maps, which happen to be
out of the range [−π, π] by construction. Unfortunately,
the maps cannot be normalized because that would break
their continuity, therefore making the linear approximations
inaccurate.

To fix this problem, we make the following assumption:
In its final pose, an object can be at most rotated by one
extra-turn, i.e., we only deal with orientations in the interval
[−3π, 3π], which is sufficient in most cases. Then, we fix
the problem by solving three problems instead of one, which
covers all the cases defined by our assumption. This is done
by creating two copies D1 and D2 of the original domain
D and modifying the bounds of the variable γ(fi)i :

D1 = 〈[v1, v1], . . . , [Γgoal − 2π,Γgoal − 2π], . . . , [vN , vN ]〉
D = 〈[v1, v1], . . . , [Γgoal ,Γgoal ], . . . . . . . . . . . . . ., [vN , vN ]〉
D2 = 〈[v1, v1], . . . , [Γgoal + 2π,Γgoal + 2π], . . . , [vN , vN ]〉,

To deal with several domains, Algorithm 2 was not modi-
fied, but we replaced the function filterDomain() (line 8) by
the function FilterDomainList() which is called with a list
of domains instead of a single domain as input parameter,
and returns a list of filtered domains. Inconsistent domains
are removed from the list (see Algorithm 3).

Algorithm 3: FilterDomainList

Function FilterDomainList(L, C)
input : L: a list of domains

C: a set of linear constraints

1 L′ = {∅}
2 foreach D ∈ L do
3 D′ = filterDomain(D, C)
4 if D′ 6= ∅ then
5 L′ ← L′ ∪ D′

6 return L′



2) Stack constraints: A similar problem arises with the
stack constraints (3):

γ
(q)
1 = γ

(j)
2 .

Since our assumption allows for orientations in the interval
[−3π, 3π], it can be the case where one of the objects, say
object o1, is oriented with a value in [−3π,−π], [−π, π], or
[π, 3π]. At the constraint level, variables are not instantiated,
so we have to consider the three possibilities. Hence, the
constraint is modified as follow:

γ
(q)
1 = γ

(j)
2 + k2π,

and introduce a new variable k in the domain. Then, we
create two copies of the existing domains (as we did for
final orientations constraints), and assign the values −1, 0,
and 1 in each copy. Note that, in theory, the same problem
can occur for transfer constraints, when extreme regions of
the kinematic maps are used for the linear approximation.
But this rarely occurs in practice, and when it does, it is
often the case that the resulting extra-turn is “absorbed” by
the final orientation constraint or by a stack constraint with
the technique described above (provided that the variable
has not left the range [−3π, 3π]).

In terms of complexity, it is important to see that each
such constraint does not increase the number of domains
by 3, but multiplies it by 3, which can quickly lead to a
large number of domains. In practice however, many of the
domains created in this way are not consistent, so that they
are eliminated by the filtering process.

VII. ANALYSIS OF THE SEARCH SPACE

In this section, we analyze the time complexity of our
approach, by analyzing the complexity of its individuals
components, namely Algorithm 1 and Algorithm 2. Then,
we qualitatively analyze how our pruning scheme takes
advantage of the structure of the problem.

A. Branching factor

The main algorithm (Algorithm 2) is a depth-first search
algorithm with pruning. The amount of pruning cannot
be easily analyzed because it depends on each problem
instance. But the branching factor of the search tree can
be directly determined: it depends on the resolution used
for discretizing actions.

action variables branching
factor

pick
θ 10

stack

place x, y, θ 500

regrasp x, y, z, θ 2000

TABLE I

test duration

1 consistency 0− 4 ms
2 IK < 1 ms
3 collision < 1 ms
4 path ≈ 0.2 s

TABLE II

Table I gives an order of magnitude of the resolutions
used for different actions. For instance, pick/stack actions

are only sampled according to the orientation θ of the
TCP/object. Assuming that a place action occurs on a flat
surface, three parameters are needed to sample the position
(x, y) and the orientation θ of the object. A regrasp action
is similar, but a volume is sampled instead. In order to
instantiate an action, the four tests described in Table II
are done in sequence before validating the configuration.
This occurs when the function getSuccessorConf() is
called (line 5 in Algorithm 2). If one of the tests fails,
another configuration is sampled and evaluated. If none of
the samples can be validated, geometric backtracking occurs.

B. Complexity of Algorithm 2

The time complexity of Algorithm 2 results from the
interaction of three components:

(i) Algorithm 2, which is exponential with the depth of
the search (the number of actions);

(ii) the number of domains, which may grow exponen-
tially because of the periodicity of angles;

(iii) Algorithm 1, which calls 2N times the simplex algo-
rithm, where N is the number of variables.

The simplex algorithm’s worst case complexity is exponen-
tial with the number of variables. Hence, the worst-case
complexity of our approach is

O( bn︸︷︷︸
(i)

· 3(nf+ns)︸ ︷︷ ︸
(ii)

·N · exp(N)︸ ︷︷ ︸
(iii)

),

where n is the total number of actions, nf is the number of
final orientation constraints, ns is the number of stack ac-
tions, b is an upper bound on the branching factor, and N is
the number of variables. However, studying the worst-case
complexity of our algorithm does not give a fair insight into
its performance in practice because:

(i) the depth-first-search algorithm may find a solution
with few backtracks if pruning is efficient;

(ii) the multiplication of the number of domains is only
for specific tasks, and is balanced by the filtering
procedure;

(iii) the simplex algorithm behaves polynomially in most
practical cases (Megiddo, 1987).

In section VII, we empirically show that in practice, the
computational cost of the simplex algorithm grows linearly
with the number of variables. We also observe that the cost
of components (i) and (ii) grows exponentially with the
number of actions. However, we show with three different
tasks involving the same number of actions that the crit-
ical parameter affecting our algorithm is the structure of
the problem rather than the number of actions. Next, we
introduce some concepts used to characterize this structure.

C. Problem structure

We base our analysis on the complexity analysis of con-
straint satisfaction problems (CSPs), in which the problem
structure is characterized by the topology of its constraint
network (Dechter, 2006). A constraint network can be rep-
resented by its primal-constraint graph or its dual-constraint



graph (see Fig. 10). In the former, variables are represented
by nodes and arcs associate any two nodes residing in
the same constraint. In the latter, each node contains the
variables associated to a constraint, and arcs are labeled by
the variables that any two constraints share.

Fig. 10. The primal-constraint graph (left) and dual-constraint graph (right)
for the pick-and-place task (see section III.F). The node on the top (right)
represents the transfer constraint, then the two kinematic constraints, and at
the bottom the two grasp constraints (we do not show placement constraints
because they do not change the topology of the graph).

This graphical representation gives an insight of the geo-
metric dependencies between actions. Consider for instance
a sequence of actions where an object is grasped with one
arm, handed over to the other arm, and placed somewhere,
as illustrated in Fig. 3. This sequence results in the dual-
constraint graph shown in Fig. 11.

Fig. 11. Dual-constraint graph the task pick-place-regrasp-
place (see illustration Fig. 3.) The dashed arrow roughly represents the
order of instantiation.

The graph consists of two “pick-place” sub-graphs (see
Fig. 10), joined through the variables p(2)

cup and γ(2)cup . γ(2)cup is
shared by the two transfer constraints, denoting the fact that
the same object is rotated two times. p(2)

cup is shared by the
two grasp constraints, meaning that the intermediate position
chosen for re-grasping must satisfy the grasp constraints for
both arms. Recall that Algorithm 2 is a depth-first-search al-
gorithm, hence the variables are instantiated chronologically
(see dashed arrow in Fig. 11). Imagine that a final position
for the object was imposed, and that the first two actions
have been instantiated. Then, the variables p(2)

cup , γ(2)cup , p(4)
cup ,

and γ
(4)
cup are assigned a value. The problem can then be

solved without backtracking, by trying all possible instances
of the second pick action (parametrized by γ(3)r ). Indeed, if
the variable γ(3)r is instantiated, γ(4)r is automatically found
by the propagation of the transfer constraint C(4)T . Once γ(4)r

is instantiated, a value for r(4) is easily found or rejected
because it is involved in two constraints (C(4)K and C(4)G ) in
which all the remaining variables are instantiated.

This example shows how action dependencies can be
exploited by our algorithm, i.e., by using previous in-
stantiations in order to reduce the choice for instantiat-
ing the remaining variables. This is only possible if the
problem structure allows for it. Note that by knowing
the dependencies between variables, one could decide on
which variables to backtrack in priority (technique known
as variable ordering in the CSP literature, see for instance
Smith (1995)). This technique is not effective here, because
backtracking in a non-chronological order implies to re-
compute all the subsequent motion paths, which may be
invalidated by changing the configuration of obstacles. In the
next section, we evaluate our approach on three problems
which have different structures: pick-and-place, filling a
glass, and stacking cups. Next, we give the dual-constraint
graphs corresponding to these tasks.

1) Pick-and-place (Fig. 12): The task consists in moving
three cups from the table to a dish rack with the left arm
(Fig. 12).

Fig. 12. Dual-constraint graph for a pick-and-place task with three objects.

The graph consists of three disconnected pick-place sub-
graphs (The variables are not explicitly represented
for clarity). There are local dependencies within each
pick-place pair, but the sub-graphs do not share any
variables because a different object is manipulated each
time.

2) Filling a glass (Fig. 13): The task consists in 6
actions: (1) picking a glass with the left arm, (2) placing
it on the table, (3) moving the left arm away, (4) picking a
bottle with the right arm, (5) placing the bottle in a vertical
position from which pouring can be done, and (6) rotating
by 90 degrees the right TCP about a predefined axis (the
x-axis in this case, see Fig. 12).



Fig. 13. Dual-constraint graph for the fill-glass task.

We observe two pick-place sub-graphs (one for the glass,
one for the bottle), with a dependency between them due to
the constraints generated by the pour action. In a nutshell:
C(5)Pour1 imposes a constraint on the relative position of the
glass and the bottle before pouring (the bottle is vertical),
C(6)Pour2 says that the position of the TCP does not change
during pouring, and C(6)Pour3 says that the TCP reaches
a certain orientation at the end of pouring (the bottle is
horizontal). The difficulty of this task is to find a position
for the glass which is reachable by the left arm and from
which the right arm can pour in.

3) Stacking cups (Fig. 14): This task consists in moving
a cup on the table, then stacking the two other cups on it
such that all the cups have the same orientation.

Fig. 14. Dual-constraint graph for a stacking task with three objects.

We observe three pick-place sub-graphs, connected by
the stack constraints (CS) restricting the positions (p(2)

cup ,
p
(4)
cup , p(6)

cup) and orientations (γ(2)r , γ(4)r , γ(6)r ) of the three
cups. Since these are only equality constraints (see sec-
tion V-D), when the pose of one cup is instantiated, the
pose of the other cups is exactly determined by the stack
constraints. Hence, this task is highly constrained, but after
instantiating the pose of the first cup, we might be able to

detect a violation of kinematic constraints for placing the
last cup, thanks to the constraints C(6)K and C(6)G .

These three tasks display constraint networks of increas-
ing intricacy. Since our approach takes advantage of such
dependencies to reduce the search space, we expect Algo-
rithm 2 to perform increasingly better on these three tasks.
For the “Stacking cups” task however, the reduction of the
search space is balanced by the presence of 2 stack actions,
which causes a multiplication of the number of domains.

VIII. EXPERIMENTAL EVALUATION

We use a simulation environment provided by DLR2

for the robotic platform Justin. Justin is a humanoid robot
with two arms with 7 DoF each, and two dexterous hands.
The robot is situated in front of a table, on which are
placed objects that can be manipulated. The algorithms are
implemented in Java, and all the experiments are conducted
on a computer with a dual-core processor (Intel Core i7,
2.66 GHz).

A. Evaluation of Algorithm 1

The linear programs were solved with Gurobi (Gurobi
Optimization, Inc., 2013). We measured the average filtering
time for linear programs of increasing size. The number of
variables was increased by generating linear programs from
action sequences of increasing size, i.e., <pick>, <pick,

place>, <pick, place, pick>,... until 10 actions (five
cups manipulated). We also compared between two kind of
tasks: Stacking cups and Pick-and-Place (see Fig. 15). The
number variables increases by 4 for a pick action, 8 for a
place action, and 9 for a stack action, which explains that
the curve representing the stacking task gets further on the
right. The number of variables starts at value 28, because
7 manipulable objects where present in the scene, and four
variables are used to represent their initial positions. The
number of constraints is roughly proportional to the number
of actions. By way of example, a sequence of 5 pick-and-
place actions lead to 84 variables and 115 constraints.

Fig. 15. Average filtering time as a function of the number of variables.

We observe that the filtering time increases linearly with
the number of variables. In case of stacking, filtering takes
slightly more time, which is due to the use of a larger
number of equality constraints of type (3) compared to a
place action. Note that these results cannot be generalized
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to problems involving constraints different from the ones
used in this work, although it is known that the simplex
algorithm is efficient for most distributions of problems.

B. Evaluation of Algorithm 2

We evaluated the algorithm SearchAndFilter (SAF) by
comparing it to a plain depth-first-search (DFS) procedure,
i.e., SAF without the filtering process. In this way, we
make sure that the differences observed in the results are
only due to the filtering process. We ran SAF on the three
tasks introduced in the previous section: pick-and-place,
filling a glass, and stacking cups. These scenarios present
an increasing difficulty in terms of kinematic dependencies,
but they are not challenging in terms of collisions i.e., the
workspace is not cluttered with occluding objects. Indeed,
our scheme is not helpful for pruning out configurations that
are infeasible owing to collisions, hence no gain would be
observed on this type of scenarios.

We present the results for cases where the problem is
feasible (experiments 1,2,3), and when the problem has
no solution (experiments 4,5,6) in order to evaluate the
capacity for SAF to reject a given symbolic sequence.
For all experiments, we have measured the number of
geometric configurations explored (#config), and the search
time (time). The horizontal axis represents the runs, sorted
by increasing number of configurations explored by the
DFS algorithm. Hence, the horizontal axis represents the
complexity of the problem measured ex post facto by DFS.
Around 100 runs were conducted, and for each run, the ini-
tial positions and orientations of objects were randomized.
The results for SAF were sorted accordingly to DFS, so
that two points with the same abscissa correspond to the
same initial conditions. Motion paths were computed using
a standard rapidly exploring random tree (RRT) algorithm.
In order to save time during search, raw trajectories are
computed to assess the feasibility of the motions. The paths
are smoothed afterward, when a solution has been found for
the whole sequence. The time given in the results does not
take path smoothing into account.

We also define two concepts which are useful to interpret
the results:

− the overhead is a constant pre-computing time, during
which the symbolic action sequence is converted into
a linear program, and Algorithm 3 is called once in
order to eliminate inconsistent domains and compute
the initial bounds of all variables;

− the filtering effort is due to the fact that Algorithm 3 is
called at each step of Algorithm 2. Hence, it depends
on the number of variables, the number of domains,
and the number of configurations explored.

• Experiment 1 : pick-and-place

Fig. 16. Results for the “Pick-and-place” task

The results for this task are shown on Fig 16. The graph
on the left shows that in 90% of the cases, both algorithms
solved the task by exploring 6 configurations, which means
that no backtracking was required (since the task contains 6
actions). In the remaining cases, 1 or 2 backtracks occurred,
and 7 or 8 configurations were explored. The reason is that
if the first cups are placed too much “on the right” of the
rack, then the remaining space for placing the third cup is
hard to reach (see Fig. 12), which causes RRT to fail. But
overall, this task is simple because actions are kinematically
independent (see the dual-constraint graph, Fig. 12), and
the space on the rack is sufficient to place the three cups.
A solution is found by picking each cup and sampling the
space on the rack until a free position is found to place
them.

The average time to solve the task is 6 s for DFS, and
6.2 s for SAF. This difference is explained by the overhead
which is 0.2 s. The overhead is low because the sequence
of actions contains only place actions, which does not
imply the creation of new domains. The filtering effort is
not significant here because only few configurations are
explored. It is fair to say that our approach has no benefit
for this type of problem, because it introduces a overhead
without reducing the search space.

• Experiment 2 : Stacking cups

Fig. 17. Results for the “Stacking cups” task

The results for this task are shown on Fig 17. The contrast
between DFS and SAF is striking on this task. DFS needs
to explore on average 500 configurations to find a solution,
whereas SAF finds a solution by exploring fewer than 10
configurations in 80% of the cases. The dual-constraint
graph for this task (Fig. 14) shows strong dependencies



between all variables. Once the position of the first cup
is instantiated, the stack constraints (which are equality
constraints) determine the exact point where the two other
cups should be. The grasp constraints reduce the domains of
the variables representing the TCPs to small regions above
these points (see Fig. 6). The kinematic constraints can be
accurately determined on these small regions. Finally, the
transfer constraints on orientations (2) determine exactly
what should be the orientation of the TCP during the
pick actions in order to be able rotate the cups by the
required amount. The constraints are so tight that once the
position of the first cup is instantiated, the instantiation of
the remaining variables is almost completely determined by
the constraints.

Since the task contains two stack actions, 9 domains are
created, but after elimination of the inconsistent ones, this
number drops to 5 on average. This results in an overhead
of 0.8 s on average. The filtering effort is not much affected
though, because the amount of configurations explored is
drastically reduced. DFS is faster than SAF on easy problem
instances (left part of the chart), because it has no overhead,
even though more configurations are explored. However,
when more search is required (right part of the chart),
spending time on computing constraints pays off.

• Experiment 3 : Filling a glass

Fig. 18. Results for the “Filling a glass” task

The results for this task are shown on Fig 18. The
analysis of the execution shows that the filtering prunes
many instances of action 2 (placing the glass on the table).
It makes sense since the variables of action 2 are subject
to the constraint C(6)Pour1 (see Fig. 13), but it is not obvious
why this constraint can allow pruning so early, since the
position of the bottle is not instantiated yet. The reason is
that the position of the bottle is already very constrained
by the interaction of the kinematic constraints and the
constraints of the pour action, i.e., the region of space
where the right TCP can rotate by 90 degrees (action 6)
around the x-axis is limited (the algorithm “knows” this
region through the kinematic constraints, which express a
linear relationship between position and orientation bounds
for the TCP). Hence, it is possible to prune out inconsistent
positions for the glass even if the position of the bottle is
not instantiated yet.

Thanks to pruning, SAF explores 3.6 times fewer con-
figurations than DFS on average, but spends 2.9 less time

only, because of the filtering effort. The simplest problem
instance requires DFS to explore 74 configurations, vs. 5
configurations for SAF. Hence, even with the overhead (∼
0.25 s), SAF performs better on simple problem instances.

• Experiment 4 : rejecting pick-and-place

For this experiment, the randomization of the initial
positions of the cups was biased, so that some of the cups are
not reachable by the left arm. Hence, Fig. 19 shows results
for problem instances which cannot be instantiated. Proving
that a sequence of actions cannot be instantiated is often
harder than finding a solution, because the search space has
to be completely explored. For this reason, difficult problem
instances take a long time to be rejected. Hence, we set
a cutoff value on the number of configurations explored,
which explains the plateau (3) in the first graph.

Fig. 19. Results for rejecting the “pick-and-place” task

Three types of problem instances emerge from the results
Fig. 19. In type (1) no search is required because the first
cup is not reachable. DFS tries all possible instances for
the first pick action, checks if an IK solution exists, and
all of them fail. This takes 20 ms on average. SAF reaches
to the same result by detecting that the first grasp is not
feasible thanks to the violation of the kinematic constraints
generated by the first pick action. It is not visible on the
figure, but it is faster (4 ms on average) than DFS.

In type (2), the second cup cannot be reached. In this
case, the pick action on the second cup fails, which causes
DFS to backtrack on 2 levels, i.e., it tries to pick and place
the first cup in all possible ways, and each time re-attempts
to pick the second cup. The same happens for type (3),
but with the third cup. This causes DFS to backtrack on
4 levels, which is computationally expensive and explains
why the cutoff value is always reached.

We also observe on types (2) and (3) that in 50% of
the cases, SAF does not explore any configuration and
rejects the sequence in 200 ms on average. Again, this is
because when a cup is not reachable (for kinematic reasons
or because it is too far), SAF detects it during the generation
of the linear program, which is inconsistent with respect
to some kinematic constraint. In this case, the sequence is
rejected without the need for search. However, since the
kinematic constraints are an approximation of the reality
(they overestimate the actual capabilities of the manipu-
lator), this does not work in the 50% remaining cases.



Hence, it happens that the linear program is consistent even
though the cup is not graspable. This typically occurs when
a cup is located close to the border of the kinematic map
(overestimation of the reachable distance). It also occurs
if the position of the cup, combined with the presence of
obstacles, impose to grasp the cup with an angle which
is close to one of the bounds computed in the kinematic
maps (overestimation of the reachable orientation). Then
SAF performs like DFS, because the task is not constrained
(see Experiment 1).

• Experiment 5 : rejecting stacking cups

Fig. 20. Results for rejecting the “stacking cups” task

The results in Experiment 5 can be interpreted in the
same way as Experiment 4, except that in the third type
of problem instances, SAF manages to complete the search
before reaching the cutoff value. This confirms that filtering
is more efficient on constrained tasks, for instantiating as
well as for rejecting an action sequence.

It is interesting to report that experiment 5 sporadically
produces some problem instances which are the worst
possible case for DFS: all the cups are easily graspable, but
they cannot be stacked together, wherever the pile is started,
whatever the orientation of the first cup is. This arises
from the kinematic constraints, together with a peculiar
initial configuration. In this case, DFS needs to perform an
exhaustive search, whereas SAF detects the inconsistency
during the generation of the linear program.

• Experiment 6 : rejecting filling a glass

Fig. 21. Results for rejecting the “filling glass” task

In this experiment, two behaviors are typically observed.
In the first one (the plateau), the sequence is rejected
because the cup cannot be grasped, and in the second one

because the bottle cannot be grasped. The first one occurs
more often because the cup is grasped using a top-grasp,
whereas the bottle is grasped by the side, which offers less
possibilities for grasping when the bottle is ill-placed. Like
in experiments 4 and 5, SAF detects that the first grasp is not
feasible thanks to the violation of kinematic constraints. It
is not visible on the figure, but it is faster (4 ms on average)
than DFS (20 ms on average), as explained before.

With the second behavior, if the bottle cannot be grasped,
DFS needs to backtrack on all previous actions which takes
a long time. DFS always performs better: by early detecting
inconsistency (30 ms on average) in 65% of these cases, or
by doing a smaller amount of search thanks to filtering in
the remaining cases.

C. Summary

The experiments led to several interesting results. For
instantiating a sequence of actions, our approach always
performs better on average compared to a depth-first-search
algorithm, if the task is sufficiently constrained (experiments
2 and 3). The more the task is constrained, the more
efficient the filtering is. However, Experiment 2 suggests
that when the number of domains increases, the overhead
causes a lower performance for simple problem instances.
Experiment 1 shows that problems with a loose constraint
network do not benefit from our scheme.

Another interesting result concerns the rejection of action
sequences. On these problems, our algorithm consistently
performs better on all types of tasks by orders of magnitude.
Obviously, by checking the consistency of the problem
before starting an exhaustive exploration of the search space,
a lot of time is saved. But experiments 4 and 5 show
that even when no inconsistency is detected, our approach
significantly reduces the search space. This can allow us
to use lower cutoff values, hence loosing fewer potential
solutions.

IX. CONCLUSION

We have pointed out an inherent difficulty of CTAMP
problems, which is the necessity to consider multiple ways
of instantiating symbolic action sequences at the geometric
level. Geometric backtrack search is one way of doing that.
In kinematically constrained problems, geometric backtrack
search becomes the bottleneck of the planning process.
We have proposed a constraint-based approach in order to
address this issue. A set of linear constraints is automatically
generated from the symbolic action sequence, and from the
geometric characteristics of the robot. We proposed an algo-
rithm which uses these constraints to shrink a set of intervals
bounding the variables of the problem, hence reducing the
space of geometric configurations. Our experiments show
that this scheme allows us to reach a solution faster when
there is one, and sometimes to avoid exhaustive search when
the problem is infeasible.

One limitation of the approach is to work with predefined
grasps, because it prevents us from manipulating unknown
objects. A possible way to deal with this would be to



“generalize” the grasp constraints from known objects to
similar unknown objects. The same limitation exists with
axes. Working with a pre-defined set of axes is necessary in
order to generate the kinematic maps off-line. In principle,
increasing the number of axes does not affect the perfor-
mance of the algorithm (it simply increases the number of
kinematic maps). However, it increases the complexity at
the task planning level by increasing the number of possible
actions. Hence, a trade-off has to be found. But the problem
remains that with a finite set of axes, some actions are
geometrically out of reach. A simple way to address both
limitations together would be to make a hybrid system, in
which actions are instantiated using the existing set of axes
when it is possible, while some actions are instantiated using
arbitrary grasps and arbitrary axes when it is not. Kinematic
constraints could be formulated in the former case, but not
in the latter.

An advantage of the proposed approach is that it is
conservative, and always performs at least as well as the
reference algorithm (in the worst case), with a negligible
overhead. This is an advantage compared to heuristic-based
approaches, which often perform the best on some problem
instances, but the worst on other problem instances. Another
advantage of this approach is that given a light modification
of the symbolic domain (introduction of discrete axes), it
can easily be plugged-in to many approaches to CTAMP.
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