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Abstract— This article introduces a new technique for planning
reactionless paths to a point in Cartesian space, for manipulators
mounted on a free-floating satellite. It is based on decomposition
of the manipulator joint space into sets referred to as primitives
which have redundancy one with respect to the attitude motion
of the base body. The time duration of the manipulator motion is
divided into sub-intervals. During a given sub-interval only one
primitive is used. The choice of feasible sequence of primitives and
times for their actuation, that satisfies given path constraints is
made using mixed-variables optimization solver based on a mesh
adaptive direct search algorithm.

I. INTRODUCTION

Utilization of manipulator systems mounted on free-floating
satellites creates a number of technical challenges related
to dynamics and control. Some of them are related to the
disturbance of the spacecraft’s attitude and position as a result
of the manipulator’s motion. Since such disturbances can
lead to problems from the viewpoint of communication and
pointing accuracy they are mostly undesirable. Therefore, the
dynamic coupling between the arm and spacecraft motion,
leads to the necessity for creation of new algorithms for
motion planning and control. Even though the spacecraft’s
motion can be controlled using gas-jet thrusters, this might
considerably shorten the systems life. Hence, the utilization
of such technique for attitude stabilization has to be limited
only to the cases when absolutely necessary.

Trajectory planning for systems under nonholonomic con-
straints is a well known research field. A robotic manipulator
mounted on a free-floating satellite exhibits nonholonomic
behavior as a result of the nonintegrability of the angular
momentum equation. Up until now, different solutions to the
path and trajectory planning problems for space manipulators
have been proposed. The concept of the generalized Jacobian
matrix was introduced in [1]. It can be used for continuous
control of the end-effector without controlling the vehicle’s
motion. A bidirectional approach for motion planning of free-
floating space robots was proposed in [2]. It was shown that the
final values of the state variables describing the system, depend
not only on the n joint variables but also on the history of their
trajectories and do not remain confined on a n-dimensional
manifold. Such result clearly implies that, the end-effector can
reach a desired position and orientation with different values
of the state variables, even if only six joint are available. This
indicates the presence of redundancy, in [3] the authors call it

nonholonomic redundancy and propose ways for its utilization
for facilitating the trajectory planning problem. In [4] Vafa and
Dubowsky proposed the novel concept of a virtual manipula-
tor which simplifies the kinematics and dynamics of a space
robot system. By solving the motion of a virtual manipulator
(fixed in the center of mass of the entire system) for a given
end-effector trajectory, the motion of the base ↔ robot arm
system can be obtained straightforwardly. Furthermore, using
this approach they formulated a tool called “disturbance map”
and then extended the notation to an “extended disturbance
map” [5], [6] which suggests paths that result in low at-
titude fuel consumption. Using optimization techniques for
performing reactionless trajectory planning, as proposed in
[7] does not always converge to satisfactory results, where
providing initial guess for the optimization algorithm is of
great importance. In [8], the authors propose a manipulator
design that provides a larger “reactionless workspace” and
address the null space planning problem. In [9], [10], con-
figuration and path planning for nonholonomic systems are
discussed. The utilization of optimal control for redundant
systems is discussed in [11], [12], [13]. Almost smooth time-
invariant control for planar space manipulators is proposed
in [14], where the authors discuss a stabilization technique
without disregarding the existence of dynamic singularities.
In addition, controllability issues related to serial space robot
systems are discussed.

This article introduces a new technique (referred to as holo-
nomic distribution control) for planning reactionless1 paths to
a desired point in Cartesian space. It has certain similarities
with a strategy previously employed for solving the inverse
kinematics problem for a redundant manipulator arm, by
partitioning the Jacobian matrix into full rank minors [15]. The
resemblance is in light of the fact that, a decomposition in joint
space which leads to certain advantages from the viewpoint of
planning and control is made. The main differences are; (i) we
consider the system’s dynamical characteristics as well; (ii)
the joint space is decomposed into sets with redundancy one
with respect to the base angular motion; (iii) the application
considered is reactionless path planning, hence the nature of
the problems that need to be dealt with is different. Some of

1In this article we focus on the base attitude motion, nevertheless the
approach to be introduced can be applied with respect to the base linear
motion as well.
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them are related to the fact that a free-floating manipulator
is a system under nonholonomic constraints; (iv) for the
implementation of our approach a mesh adaptive direct search
(MADS) algorithm is utilized.

The paper is organized as follows. Preliminaries and main
notation are presented in section II. The holonomic distribution
control (HDC) is introduced in section III, and issues related
to its application are addressed in section IV. Results from a
numerical simulation that demonstrates the usefulness of the
proposed planning strategy are presented in section V. Finally
the conclusions are summarized in section VI.

II. PRELIMINARIES AND MAIN NOTATION

A. Basic Equations

We assume that a serial n link manipulator is attached to
a free-floating base satellite. The linear and angular velocity
of the satellite base (vb, ωb) and the motion rates of the
manipulator joints (φ̇) are chosen as generalized coordinates.
Assuming that the linear momentum is equal to zero, the
angular momentum conservation equation for such a free-
floating system can be expressed as follows:

L = H̃bωb + H̃bmφ̇ (1)

where, H̃b and H̃bm are the base inertia and coupling inertia
matrices, respectively (for derivation of equation (1) see [16]).

The angular momentum conservation equation (1) is of
special interest to us, because it is directly related to the base
rotational motion. Attitude destabilization is mostly undesir-
able, because it can lead to various problems. That is why it
will be the primary focus of this article.

In general H̃b and H̃bm are functions of the joint and
base variables, however if the external forces and torques are
assumed equal to zero, both inertia matrices will depend only
on φ. This fact is useful, since with proper joint control, one
can ensure minimal base attitude deviation. Such control is
referred to as reactionless manipulation [17]. Both compo-
nents on the right side of equation (1) define a partial angular
momentum of the system. The first term represents the angular
momentum of the base body as a result of its attitude change,
the second is related to the manipulator motion and is called
the coupling angular momentum between the base and the
manipulator [18]. In this context, reactionless manipulation
can be defined as such motion that results in zero momentum
redistribution between H̃bωb and H̃bmφ̇.

Next, a brief discussion on the types of constraints that
need to be dealt with during the planning process, and a short
overview of some basic concepts from differential geometry
that are needed for the formulation of the holonomic distribu-
tion control, are made.

B. Pfaffian constraints

In this subsection, a brief treatment of two types of Pfaf-
fian constraints (integrable and nonintegrable) is made. Both
appear typically when free-floating systems are studied. It is
assumed that the system of interest is drift free, in other words
the angular momentum (L) is equal to zero.

Let us consider a system of holonomic constraints defined
by the following set of m algebraic functions:

hi(q) = 0 , i = 1, ...,m (2)

where q ∈ Rn is a vector that uniquely represents the
configuration of the system of interest. After the constraints
in (2) are imposed, the motion of the system evolves on a
f = n−m dimensional manifold (for a definition of manifold
see [19] p. 403). In many practical cases, before the application
of the constraints in (2), they are reformulated at velocity or
acceleration level. Such transition is straightforward and most
importantly, reversible ( [19] p. 318). Let us write this in the
following fashion:

hi(q) = 0 ⇒ ∂hi

∂q
q̇ = νi(q)q̇ = 0 ⇒ hi(q) = 0 (3)

The set of equations:

νi(q)q̇ = 0 (4)

are called Pfaffian constraints. A set of Pfaffian constraints is
said to be integrable, if it is equivalent to a set of algebraic
constraints. With equivalent, it is implied that the Pfaffian con-
straints span the same smooth hypersurface in configuration
space as the set of algebraic constraints. It is customary to refer
to integrable Pfaffian constraints as holonomic, although they
are expressed at velocity level, while holonomic constraints
are defined by a set of algebraic functions.

In many cases, the formulation of the constraint equations
can be done only at velocity level (forming a set of Pfaffian
constraint). For example, using equation (1), the condition
that should be satisfied in order for a manipulator to perform
reactionless motion can be expressed as follows:

H̃bmφ̇ = 0 (5)

Note that the above constraint could not be defined explicitly
as a function of the manipulator joint positions because the
system of interest has a nonholonomic structure, and (in
general) for the same manipulator configuration the base
position and attitude can be arbitrary.

When a Pfaffian constraint is not defined as the differential
of an algebraic function (as in the case of equation (5)),
determining weather the resulting constraint is holonomic is
not straightforward. A single Pfaffian constraint is said to be
nonholonomic if it is nonintegrable, hence, it is not equivalent
to an algebraic function (defining a holonomic constraint).
Discussing integrability in the presence of multiple Pfaffian
constraints becomes much more involved. The reason comes
from the fact that, even if each of the constraints in (5) is
nonintegrable, the combination of two or more of them might
lead to an integrable (holonomic) set of constraints. This fact
will be fully utilized in the holonomic distribution control that
will be introduced in the next section.

In many cases, it is convenient to convert a given problem
with nonholonomic constraints in another form. By examining
the system not from the viewpoint of the directions of impos-
sible instantaneous motion, but rather from the viewpoint of



the directions in which we are free to move, in other words the
space of allowable motions. The basis for this space coincides
with the right null space (to be denoted by ℵ) of the constraints
in (5). Hence, the space of allowable motions can be expressed
as:

φ̇ = ℵ1(φ)u1 + ℵ2(φ)u2 + ... + ℵf (φ)uf (6)

where the column vector u ∈ Rf (containing all the u’s)
represents the control input of the system in (6), and ℵi (i =
1, 2, ..., f ) are vector fields forming the range space of ℵ.

At the end of this subsection, it is convenient to adopt some
notation from differential geometry, which will be used in
Section III for the formulation of the holonomic distribution
control. The following definitions are adopted from [19].

Definition 1: A vector field on Rn is a smooth map which
assigns to each point φ ∈ Rn a tangent vector φ̇ ∈ TφRn.
Where TφRn stands for the tangent space to point φ.

Definition 2: A distribution is a smooth map assigning a
linear subspace of TφRn to each configuration φ ∈ Rn.

Example for a distribution is the linear span of the vector
fields ℵ1(φ),ℵ2(φ), ...,ℵf (φ) in equation (6). In general we
will denote a distribution as:

∆ = span{ℵ1(φ), ...,ℵf (φ)} (7)

Evaluated at any point φ ∈ Rn the distribution defines a linear
subspace of the tangent space TφRn:

∆φ = span{ℵ1(φ), ...,ℵf (φ)} ⊂ TφRn (8)

Definition 3: A distribution ∆ is said to be regular if the
dimension of ∆φ does not vary with φ.

Definition 4: A distribution is involutive if it is closed under
the Lie bracket.

III. HOLONOMIC DISTRIBUTION CONTROL

In this section we propose the holonomic distribution con-
trol (HDC) in order to simplify the reactionless path planning
problem. Its main concept is outlined hereafter.

The HDC is defined to be a control in the form of equation
(6), that utilizes a one dimensional distribution ∆1 ⊂ ∆. The
dimension of the distribution ∆ coincides with the degree of
redundancy of the system, which is f = n − mb, where n
is determined by the manipulator joint variables (the system
of interest is assumed to be in a free-floating mode), and mb

represents the base task constraints. The reasoning for using
only one dimensional distribution is based on the fact that, in
any configuration φ, the solutions which lead to reactionless
manipulation evolve from a one dimensional manifold. By
using Lie bracket on the columns of the reaction null space of
the coupling inertia matrix H̃bm (which span the distribution
∆), an involutivity of ∆1 can be established [17]. In addition, if
the coupling inertia matrix does not loose rank, the distribution
∆ (and hence ∆1 ⊂ ∆) can be shown to be regular. Once
involutivity of a regular distribution ∆1 is established, its
integrability follows directly from the Frobenius’ theorem.

Fig. 1. Cartesian paths when using different primitives for a three DOF
planar manipulator mounted on a free-floating base.

By choosing different combinations of vector fields (mem-
bers of ∆) in order to form distinct one dimensional distribu-
tions ∆1, the motion of the system can be steered in different
directions. Furthermore, the constraints corresponding to ∆1

are holonomic, hence, each of the instantaneously available
motion directions, lie on a smooth one dimensional manifold
in joint space. Such approach can facilitate the planning
problem as will be shown in the sequel.

Remark:
Above, an assumption that the coupling inertia matrix does

not loose rank was made. This assumption can be shown to
be always valid, if the system of interest has strong inertial
coupling [20].

One way of defining distinct one dimensional distributions,
is to partition the manipulator joint variables into a number of
sets, referred to as primitives. Each primitive consists of mb+1
joint variables (mb is the number of base rotational motions to
be controlled). For example, if a three DOF planar manipulator
mounted on a free-floating base is considered, its primitives
can be defined as depicted in Fig. 1. Since mb = 1, each
primitive consists of only two joints. For example, primitive
1 is formed by joints 1 and 2. Let us assume that for a
time period t + ∆t just one primitive is actuated and the
remaining joints are servo locked. Hence, at a given time t
each primitive defines a direction for the reactionless end-
effector motion in Cartesian space2 (Fig. 1). It is clear that
these directions are just a subspace of the possible end-effector
reactionless motions from a given manipulator configuration.
Nevertheless, the decomposition utilized here facilitates the
path planning problem, because manipulator motion derived
from one dimensional null space of the coupling inertia matrix
H̃bm, results in a curve in Cartesian and joint space (not a
surface). Hence, at each manipulator configuration the end-
effector motion resulting from a given primitive is unique3.

2For the example discussed above there will be six such directions.
3In the case when the manipulator motion is derived using a distribution

with two or higher dimensions, the reactionless paths lie on a two or higher
dimensional surface. Choosing a direction on this surface is not a trivial
problem, and that is precisely what we want to avoid.



Using HDC regarding systems in three dimensional space
is possible. In the case of a 3D five DOF manipulator for
example, when mb = 3 five primitives exist (each of them
consists of four joint variables). In the case of a six DOF
manipulator the primitives are fifteen.

Once a primitive is chosen the joint space is separated into
actuated (φa) and stationary (φs) joints.

[
H̃

s

bm H̃
a

bm

] [
φ̇

s

φ̇
a

]
= 0 (9)

The motion rate of φa can be calculated as follows:

φ̇
a

= −H̃
a+

bmH̃
s

bmφ̇
s
+ ℵaξ̇

a
(10)

where ℵa = (E−H̃
a+

bmH̃
a

bm) represents the null space of the
coupling inertia matrix corresponding to the actuated joints
(H̃

a

bm), ξ̇
a ∈ R(mb+1) is an arbitrary column vector, and E is

a unit matrix with proper dimensions. If φ̇
s

= 0 is assumed,
the above equation becomes:

φ̇
a

= ℵaξ̇
a

(11)

It should be noted that, end-effector paths resulting from
joint velocities calculated from (11) does not depend on the
magnitude of ξ̇

a
(assuming that it is not equal to zero). The

reasoning for this comes from the fact that the null space of
H̃

a

bm is one dimensional. Hence, ξ̇
a

can influence only the
end-effector velocity on a given path. Since trajectory planning
is not the issue here, ξ̇

a
will be considered to be with constant

magnitude. Nevertheless, its sign can determine the direction
of motion and needs to be accounted for.

Using the fact that the Cartesian paths are independent from
the magnitude of ξ̇

a
, the path planning problem reduces to

finding a sequence of primitives, in combination with durations
∆t for the actuation of each primitive. A way to determine
them will be discussed in the following section.

IV. HOLONOMIC DISTRIBUTION CONTROL - APPLICATION

The problem of finding feasible sequence of primitives and
times for their actuation that satisfy given path constraints is
essential for the successful planning. For simplicity, hereafter
only one path constraint will be considered, namely a desired
final position for the end-effector. Furthermore, it is assumed
that the initial manipulator configuration is known. In this
section the reactionless path planning is defined as an opti-
mization problem. The state variables are chosen to be a se-
quence of h primitives P = [P 1

i , P 2
i , P 3

i , ..., Ph
i ], and the time

for actuation of each of them T = [∆t1, ∆t2, ∆t3, ...,∆th],
where i = 0,±1,±2, ...,±z. Note that Pz stands for the last
available primitive (z), and P−z accounts for the motion in
the opposite direction4. Choosing P0 will result in a stationary
system. It is not necessary to include all primitives, in some
cases for example, the motion in the opposite direction will
clearly be unnecessary, hence, it could be disregarded in order
to facilitate the optimization solver.

4For the case of the three DOF manipulator in Fig. 1 i = 0,±1,±2,±3.

Apart from the already mentioned path constraint (final
position of the end-effector), the solution to the optimization
problem should satisfy the following geometric condition:

φmin ≤ φ ≤ φmax (12)

It should be noted that, constraints for the base attitude are
not necessary since the manipulator motion is derived from
equation (11).

Judging from the state variables (T and P ) and constraints
defined above, the problem that has to be solved is a typical
nonlinear mixed-variables optimization problem. T represent
h continuous variables, and P represents h categorical vari-
ables5.

Solution of a mixed-variables problem can be found us-
ing different techniques, here a mesh adaptive direct search
(MADS) algorithm is utilized. It is very similar to generalized
pattern search algorithm, however, presents some advantages,
since the local exploration of the space of variables is not re-
stricted to a finite number of directions (called poll directions).
For more details see [21].

Calculation of the manipulator motion and constraints can
be performed at kinematical level6. For given vectors P and
T the precess can be described as follows:

Step 0© Initialize counter j = 1, and time t = 0.
Step 1© At time t from the known positions and velocities

of the generalized coordinates of the system (rb, vb, φ and φ̇),
compute the coupling inertia matrix H̃bm (the state variables
describing the angular motion of the base are not considered
since no attitude change will occur).

Step 2© If t > ∆tj , increment j with one.
Step 3© Use P j to derive the motion rates for the actuated

joints (φ̇
a
) from the null space of H̃

a

bm.
Step 4© Knowing φ̇ (note that φ̇

s
= 0 ), find the base linear

velocity (vb) from the momentum conservation equation.
Step 5© Integrate vb and φ̇ to obtain rb and φ.
Step 6© Increment t with δt (integration step size).
Step 7© If j ≤ h goto Step 1©.
When the above calculation is over the optimization proce-

dure can evaluate the difference between the real and desired
end-effector position as well as the geometric condition (12)
and generate new entries for P and T if necessary.

In general, more entries (state variables for the optimization
procedure) in P and T result in more precise path planning.
The same applies for the number of available primitives, since
they provide a diversity of the solution at a local level. On the
other hand the size of h and z affect the convergence rate of
the optimization solver, hence, they should be chosen carefully
considering the characteristics of the problem to be solved.

V. SIMULATION STUDY

In this section the results from numerical simulation of a 3
DOF planar manipulator mounted on a free-floating base body

5Variables whose values must always come from a predefined list. For
example, color, shape, or in the case discussed here, primitive number.

6Since external forces and torques are assumed equal to zero, computation
of the system dynamics is not necessary.



TABLE I

MODEL PARAMETERS

Base Link 1 Link 2 Link 3
m [kg] 40 2 2 2
l [m] 0.5 1.0 1.0 1.0

I [kgm2] 25 0.5 0.5 0.5

are presented. The parameters of the system are in Tab. I. The
simulation is performed in Matlab 7.0, and the Matlab toolbox
Nomadm [22], that implements MADS algorithm is used as
an optimization solver.

The results presented hereafter, demonstrate the ability to
generate a reactionless Cartesian path for the end-effector from
a given initial manipulator configuration to a desired final
position. The initial manipulator configuration is taken to be
φ̇ = [15, 15, −25] deg. The desired end-effector final position
is assumed to be [1, 1, 0] m. The available primitives are
chosen to be (see Fig. 1):

i = 0, 1, 2, 3

The specified initial guess for the optimization procedure is:

P = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T = [8, 8, 8, 8, 8, 8, 8, 8, 8, 8] sec.

The vector ξ̇
a

used is [0, 0.5]T , and the joint limitations are
φmin = −150 deg., and φmax = 150 deg. The result from
the optimization procedure is:

P = [1, 2, 3, 1, 2, 1, 1, 2, 3, 0]
T = [17.5, 12.4, 11, 6.3, 4.4, 6.2, 14, 3.4, 2.8, 7] sec.

If the above sequence of primitives in P is used, with time du-
rations the entries of T , the manipulator will reach the desired
position in Cartesian space. Fig. 2 depicts three manipulator
configurations (initial, intermediate and final one). It can be
observed (Fig. 2) that during the motion of the manipulator,
the base body undergoes translational motion. This is expected,
since only the base attitude was controlled.

The joint angle and joint angular velocity profiles are
depicted in Fig. 3. They clearly show the switching from one
primitive to another. The x axis represents the currently used
primitive. The nonsmooth profile of the joint velocities is a
result of the constant magnitude of the parameter ξ̇

a
. Such

constant magnitude of ξ̇
a

was used in order to facilitate the
optimization solver. Once a feasible Cartesian path is obtained
however, a smooth joint velocity profile can be generated in
a straightforward fashion. Hence, the time profile of the end-
effector on the reactionless path can be additionally specified.

In addition, it should be noted that servo locking the joints
not included in the currently used primitive is just one possible
option. Alternatively using predefined profile for their motion
can result in a completely different manipulator behavior. This
might prove to be useful in cases when the currently available
primitives cannot provide a desired manipulator motion.

Fig. 2. End-effector path in Cartesian space. The manipulator configuration
is depicted at the initial, intermediate and final positions.

After obtaining a solution for P and T , the resultant tra-
jectory might be unsatisfactory. In some cases, discontinuities
can be observed during transitions between two primitives.
This fact though unwelcome is by far not unexpected since
only a subspace of the space of possible reactionless motions
was utilized. Once a feasible path is obtained however, it can
be used as an initial-guess for a new optimization procedure,
where criteria regarding the smoothness of a given path
segment can be included. This new procedure does not need to
use holonomic distribution control. Once a good initial-guess
is available most of the optimization algorithms can converge
to satisfactory results. The merit of the HDC can be found in
the fact that it decomposes the entire set of available solutions
into small subsets, that can be utilized much easier. If using
one subset does not yield satisfactory results it can be changed,
and a different one could be utilized. Finding a solution can not
be guaranteed since the nature of the problem is highly non-
linear, however, the HDC provides a reasonable simplification
for the path planning problem. It is worth mentioning that
even though the initial guess specified for the example here
was trivial, providing a meaningful one is possible. In some
cases, experienced user can use HDC and by try and error,
reach an adequate solution.

VI. CONCLUSIONS

This paper introduces a new concept (referred to as holo-
nomic distribution control) for planning reactionless end-
effector paths to a point in Cartesian space. It is based on using
a one dimensional distribution in joint space by partitioning it
into sets called primitives. Each primitive consists of mb + 1
manipulator joints, where mb is the base attitude motions
that need to be controlled. Using such approach, the path
planning problem reduces to finding a sequence of primitives,
in combination with times for their actuation, that satisfy
a desired criteria. Since each primitive results in holonomic



Fig. 3. Profiles of the joint angles and joint angular velocities.

behavior of the system, finding a solution to a nonholonomic
planning problem is substituted with finding a feasible se-
quence holonomic motions.
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