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Abstract— Since the introduction of independent contact
regions in order to compensate for shortcomings in the po-
sitioning accuracy of robotic hands, alternative methods dr
their generation have been proposed. Due to the fact that (in
general) such regions are not unique, the computation metlus
used usually reflect the envisioned application and/or unde
lying assumptions made. This paper introduces a paralleliable
algorithm for the efficient computation of independent contct
regions, under the assumption that a user input in the form
of initial guess for the grasping points is readily availabeé.
The proposed approach works on discretized 3D-objects with
any number of contacts and can be used with any of the
following models: frictionless point contact, point contat with
friction and soft finger contact. An example of the computaton
of independent contact regions comprising a non-trivial tak

into the grasp assessment was suggested by Pollard [6].
She introduces thébject Wrench Space (OWS) (which
represents the best possible grasp), and formulates ayquali
measure as the scale of the largest OWS that fits entirely in
the GWS. Several works have integrated disturbance forces
on the object geometry in the grasp evaluation [6][7][8].
From the viewpoint of a mechanic manipulator, not only
the ability to resist disturbances, but also the robustness
of a grasp is an important factor. Grasps which are less
sensitive to modeling and positioning errors are desirable
In this context, the notion ofndependent Contact Regions
(ICR) was suggested by Nguyen [9]. He defined the set
of optimal independent regions with the largest minimal

wrench space is given. radius, which yield a force closure-grasp if each finger is

placed anywhere within its respective region. The concept
Evaluating the “goodness” of a given multifingered graspvas extended to the computation of independent regions for
while accounting for the capabilities of the grasping devicthree-finger grasps on planar objects [10], and four-finger
is an important issue in dexterous manipulation. For grasps of polyhedral objects by Ponce et al. [11]. The latter
large class of grasps the force closure property is desirabhpproach has a number of drawbacks: (i) three conditions for
Loosely speaking, force closure means the ability of théorce closure are presented, however, two are disreganded i
grasp to immobilize the grasped object influenced by athe later analysis due to their nonlinear structure, legdin
arbitrary external disturbance, if the manipulator is ¢dpa the possibility of excluding viable candidate regions);, fiiis
of exerting sufficiently large contact forces on the objddt [ not clear, how to compute ICR given a bound on the possible
Contact force vectors and resulting torque vectors are cordisturbance wrenches; (iii) it is unclear, how the approach
monly concatenated to wrench vectors. Mishra et al. [2Zjould be extended to five or more fingers. The above prob-
showed that a grasp is force closure, if the convex hulems were addressed by Pollard in [12], where the synthesis
spanned by the contact wrenches contains a neighborhoafdgrasps on 3-D objects with a large number of contacts
of the origin. is discussed. Furthermore, a task related quality measure
However, in many cases force closure is just a necessaiy,incorporated in the evaluation of ICR. The computation
and not a sufficient requirement. Usually it is desirable tés based on geometric reasoning in the wrench space and
specify additional conditions in order to evaluate a graspequires the solution of a Linear Programming problem (LP).
There are many quality measures proposed in the literatutill, a detailed discussion of an efficient algorithm foeth
(see [3] for a survey). A good grasp should be able tgeneration of ICR is not presented. Roa and Suarez [13]
efficiently withstand forces, which are likely to occur chgi  suggested an algorithm, which grows independent regions
the performed task. If nothing about the task is known, &r precision grasps on discretized objects. Howeverrthei
common measure is the radius of the largest origin-centeraetethod is very sensitive to the choice of friction coeffitien
insphere of theGrasp Wrench Space (GWS), which was and more restrictive than the approach presented in [12].
proposed by Kirkpatrick et al. [4]. The GWS is defined In this work, an in-depth analysis about the geometric
as the convex hull over the set of all wrenches that theelations in the context of independent contact regionsas p
manipulator can exert on the object for a given grasp. In thigded, along with an extension of the approaches presented
definition it is presumed that the sum of the magnitude of thim [12] and [13]. We introduce an efficient parallelizable
grasping forces is bounded. Ferrari and Canny [5] introducelgorithm for determining ICR for a given fixed set of
the physically more relevant convex hull over the Minkowsktontact points on discretized 3D-objects with any number
sum of the grasp wrenches. This implies that no more thaN of contacts which satisfy the force closure condition.
a force of a given magnitude is applied at each graspinbhe algorithm is capable of determining the regions for a
point. A way to incorporate the whole object geometrynon-trivial disturbance wrench set and can be used with:
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frictionless point contact, point contact with frictiondroft
finger contact models.

The assumptions and required background are provided
in Section Il. In Section Il we present our efficient algo- "
rithm for computing independent contact regions and finally "
Section IV contains a numerical evaluation. “

II. BACKGROUND
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number of contact points in a grasp,

]
number of points on the surface of an object, e ! sl |
number of wrenches used in a contact model, - : ) 1
number of hyperplanes bounding a convex hull, o " i’ RS s B g |
index used for points in a given grasp, o } v ez T /
index used for points on the surface of the object, SN : <
index used for wrenches in a contact model, i o

index used for hyperplanes. \5\//

Bold letters are used to denote matrices and vectors. Thg ;.
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Independent Contact Regions. Red squares represent the original

i element of a sef is denoted byc (¥, grasping points, blue squares the independent contacin®grhe regions
are computed considering possible disturbances specifi&@ection IV-B,
B. Assumptions & Problem De&ription utilizing frictional hard-finger contacts.

A sufficiently discretized representation of the target i i )
objects surface, given as a polygonal mesh of poim@e distances between the grasping points and the center of

p, (s =1,...,5) with corresponding inward-pointing unit the corresponding independent region.
normalsn is required. The reference frame is fixed in thegy  contact Models

Center of Mass (CoM) of the object. Each painthas asso- i . - .
( ) ) pom We first considerfrictional point contacts between the

ciated neighboring points, defined as the ones connected to

p. by an edge of the mesh. We presume, that a “sreasonabf@r9et object and the fingers of the gripper. The friction-

setof taskd; (¢ — 1,..., T) is specified as sets ofdisturbancecoemdem according the Coulomb friction model is denoted
‘ - u. In order to prevent slipping, a forcg, applied at a

wrenches, which needs to be resisted by the grasp. An initiaP. tn has to fulfill the followi traint:
force closure grasp, able to withstand the Minkowski sum dointp, has 1o Tulliil the Tollowing constraint.

the given sets of disturbance wrencligss provided. Such [|fs— (fs-1o)ng|| < p(is - f). (1)
a grasp is defined as a setdfcontact points on the objects . ] o )
surfaceG = {p,,---,py}. The necessary starting graspTh'S describes a nonlinear friction cone, which can be

could be acquired by means of human demonstration or @pproximate_d by aL-_sided convex polyhedron. The set
one of the algorithms proposed for the synthesis of forc@f forces with magnitudef; along the L edges of the
closure grasps [13][14]. Furthermore, quasi-static ciors ~ discretized cone located at contact popnt is denoted in

are assumed. matrix notation asF's = [f(p,), -, f.(p,)]. Thus, the
We are interested in the computation of ICR, defined a@asping forcef  is given by:
the N independent region,, each one associated with a fo=Fso,, o,>0, |aglr, <1 (2)

contact pointp, of the original force closure grasp. The

setsC, contain points on the target objects surface, eachhe force f, creates a torque, = (p, x f,). Force and
of which can replace,, in G. Any grasp composed ol  torque vectors can be concatenated to a wrench veetor
contact points, where one point is picked from each region ¥

Cy, will be force closure and preserve the task requirements. ws = <Tj)\> , A= m3X(||pS||). 3)

An example of ICR for a four-fingered frictional grasp on
the model of a cup is shown in Fig. 1. Dividing the torque parts by the largest possible torque arm

A guarantees scale invariance [6]. The wrenches generated

C. Application by forcesf, along an edge of the discretized friction cone

If expected disturbances are represented as a meaningd§ referred to agrimitive wrenches. For a given contact
set of tasks, the size of the independent regions can Beintp,, the set of primitive wrenches is defined as:
glrectI){‘ rglat”ed to the required posnmnmg_aecurgcy.&éle W, = {wi(p,), - ,wr(p,)}. 4)
inger “aims” at the center of its respective region, larger
ICR provide increased robustness to finger positioningerro The soft finger contact model according to [16] allows
Kim et al. [15] formalized this notion by introducing the for additional torsional moments around the local contact
Uncertainty Grasp Index, which is described as the sum ofnormaln,. Here, the set of primitive wrenches in Equation 4



needs to be supplemented by the according wrenches. In the [1l. I NDEPENDENTCONTACT REGIONS

soft finger contact model, scaling the wrench vectors by the | ¢ the H-representation of the convex hull defined in (5)
largest possible torque arindoes not grant scale-invariancep o given as(A, b), where A = [nq,...,ny|T € REXK js
any more. This is due to the fact, that the additional wreache, marix containing the inward-pointing unit normals to the
do not depend on the object geometry. Still, scaling 'mparﬁounding hyperplanes. The vectbr= [b, ..., by]T € RY
invariance to the chosen units of length. contains the distances to the origi. = 3 if the object

In the case of thdrictionless point contact model, the i, pe grasped is planar, an§ = 6 when the object is
friction coefficient,. is zero andf, acts along the surface e dimensional. From our assumptions it follows that the
normal. In this case, the seV; just holds one wrench .q,nyey hull associated with the TWS will be contained in the

generated by the respective normal force. Given a Gragpyg ofG. Hence, for all disturbance wrenches € TWS

g, the discrete GWS is described by the convex hull OVei,y, + b > 0. We defineby, — ¢, as the distance from

the union of theN primitive wrench sets belonging to the o pth hyperplane to the TWS,e. the hyperplane defined
grasping pointp,,: by (nn,e,) is tangent to the TWS. The distances are
GWS— CH (U{Wh . ,WN}) _ ) combineq_in the vectoe = [e;, ...,e_H]T e RH.

In addition to theH-representation of the GWS, we need
Equation (5) characterizes the space of wrenches, whieh define sets of indices, ,, one for eachw;(p,,) that is a
can be exerted to the grasped object when the sum of thertex in the GWS. Led),, be a set containing the indices
magnitudes of all finger forces is bounded by a valie  of the vertices (in the GWS) associated wif). Clearly, the
Since the applied forces are proportional to the currerttén t number of elements i, is smaller or equal td..
actuators, this can be seen as a limitation due to a common -
power source [5]. ono =A{h : MWy (p,) +bn =0, 0vEVn}.  (7)

E. Task Model Thus,h € 0,., andv € V,, imply, that the wrenchw,(p,,)

Tasks are represented as sets of disturbance wrenched Vertex and lies on thé™ hyperplane ). Let us
which needs to be resisted. Givdn tasks7;. we denote denote the independent contact region associated with
the Task Wrench Space (TWS) as the convex hull over the P DY Cn. By definition, C,, will contain points each of

Minkowski sum of the tasks: Which can replape;_)n in G and still preserve the task
requirements. This implies that the convex hull spanned by
TWS=CH (@{Tu" 7TT})- (6) the wrenches associated with any pointdp, combined

One frequently used representation of the TWS is the Iarge\glth the wrenches associated wit — 1 points, each

origin-centered insphere of the GWS. Yet, this gives onl hlcl)sen fr_omhone OIZ Lh_e Otgév —1 :dddgpendent regions,
weak protection against disturbance forces on the extre contain the task disturbances. Ing & new pamt

parts of the object geometry and might pose unnecesséR/C" by using a brute-force approach and testing whether

restrictions by protecting against disturbances which ar® — = O’W,L (which requires .the re—computatlon of
unlikely to occur. A physically better motivated way to _(5))' for all poss@le grasps with p_omts already in the o_th_e
describe a tasi;, is by wrenches resulting from a rnaXimummdepender_]t regions is _not feasible. Instead, by defining
number of S possible disturbance forces, which can acgearch regions directly in the wrench space, qulard [.12]
on any pointp, on the objects surface. The sum of the‘oreser?ted an easy to evaluate criterion .for addllng points
magnitudes of all disturbance forces is denoted’aswhich N a given mdepeqdent contact region. F|gqre 2 |IIusFrates
has to be smaller or equdl,. This way of modeling a the core idea, which is based on geometric reasoning. It
task is equivalent to a scaled OWS [6] and shall be denot&li'o\"’S the convex hUICﬁ(_X ): Spa”r?e_d by vectora:?-

as OWS,. It is presumed, that the disturbance forces art = {ml"'ml})' containing the origin. By convexity,
caused by frictionless point contacts of the object with th #(X) is fully contained in one Of the half-spaces defined
environment. Assuming a sufficiently high discretizatidn o°Y the hyperplane;, corresponding to fac_ef.A Facet f

the object, wrenches resulting from frictional contact rbay is said to belong to theisible region of a point:; if that

contained in OW$ nevertheless. Otherwise they can easiI)P,oint lies“ in tkle half-space Ok not in(_:luding the origin
be added [6]. (i.e. x; "sees” f) [17]. Let S, be the intersection of all

Qalf-spaces defined by hyperplanes corresponding to facets

Combining multiple independent tasks usually involve ; J |
so thatS; does not contain the origin.

the computationally expensive Minkowski sum according tyvhich containz;,
Equation (6). However, Borst et al. [8] have shown, that . _
disturbances caused by the gravitational fod€g,, can Proposition 1:
easily be incorporated in the OWS If the CoM is used as (&) CH(X) C CH({X\z;,2;}) if all visible facets from

torque origin, the OW$ as well as the gravitational forces x; are visble from ;. .
are tightly enclosed by a sphere in the force domain. Thus(P) The convex hull of multiple sets containing CH(X)
it is possible to simply scale the force domain of the OWS contains CH(X).

by a factor(1+ Fy,..,/Fp), in order to consider disturbancesProposition 1-a states, that the convex hull resulting from
caused by gravity as well. replacing a vertexe; with a point ; will fully contain
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Fig. 2. \sible Region: The yellow facets denote the visible region from Fig. 3. Search regions for C1: Abstract 2-dimensional GWS, showing valid

the point&; on CH(X). According to Proposition 1, point; can safely locations for primitive wrenches, so that the associatedtpo task spaces

be substituted byt1. Pointsz; andxo can simultaneously replaced by a Ci. A friction cone discretization of. = 2 is assumed. The red lines denote

point lying in the intersection of search regiof§s and Ss. valid convex combinations of the primitive wrenches, whaole shown as
red squares. Contact points associated with the primitrenehes depicted
as blue squares, as well as the primitive wrench illustrated yellow square

CH(X), if the visible region ofx; on CH(X) is seen by also can replacep; without violating the TWS. Note that all primitive

2. as well. This is the case for any; ¢ S; [17]_ Note Wrenches (with the possible exception of those stemming ftorsional
hz o ivle for : 5 (;ﬂ h moments in case of soft finger contact) lie on the boundaryhef@WS,
that It Is pO.S.SI € Orf’i to S_ee more facets H(X) than _ which cannot be adequately represented in two dimensiomshdfmore,
x,;. Proposition 1-b is a direct consequence of convexityhe primitive wrenchesw, (p,,) corresponding to contact poings, are
According to the above Proposition poiﬁt in Fig 2 can connected by ridges of the convex hull, which are depictetthénsame line
. . L s style as facets.

safely substitutez; while preservingCH(X). One point in
the intersectionS; (S, is sufficient to replacer; and x-
smultapequsly. ) ) A. Previous approaches

In this light, the requirements for a point on a target ) ) ) )
objects surface to be included in one of the independentHeré, we want to provide a brief discussion of the sug-
regions are illustrated in Fig. 3. Shown are the convex hul@estions presented by Pollard [12] and Roa and Suarez [13]
of a three-fingered frictional grasp and a respective task f'd compare it to our approach. Pollard provides the idea
a hypothetical two-dimensional wrench space. In order for & SPanning search spaces belonging to primitive wrenches
candidate poinp, to qualify as a member af,,, the TWS of the GWS. However, no algorithm for the computation of

S 1 . . . .

has to be fully contained in the GWS resulting from replacinéj“jelo‘?mje”t regions is provided, and sgarch Spaces corre-
the primitive wrenchesw, (p, ) with the primitive wrenches SPOnding toevery wrenchw(p,,) are defined. Compared
corresponding tg,. For example, the condition for a point to the search regions formu_Iated in Eq. (8), this is disad-
p, to be included in the independent regiénis that there vVantageous from a computational point of view, because not
have to exist possible convex combinations of the primitiv@ecessarily every, (p,,) is a vertex of the GWS since some
wrenchesw, (p,) inside both search regiod, , ands,, ,. Ma&Y lie on .the boundary or, in case of the soft fmger contact
If this condition is satisfiedp, can replace the original Model, inside the GWS. Hence, the approach in [12] can
grasping pointp, according to Proposition 1. The searchProduce more search regions than necessary, which have to
region S,, , is built by the intersection of the half-spacesP€ evaluated. o
defined by hyperplanes parallel to facets containingp, ) Roa and Suarez [13] simplify the search problem, by
and tangent to the TWS, so th&}, , does not contain the €xclusively checking primitive wrenches;(p,) for the
origin (S,, , is defined accordingly). Note that Propositioninclusion in the respective search regions, instead of thei
1 is also satisfied if there exists a convex combination of thg°nvex combination. This might lead to the exclusion of
primitive wrencheaw, (p,) in the intersectiorS,, , S,,,. SOMe viable contact points, but is computationally more effi

The general definition of search spac®s , is as follows: cient. However, they define only one search region assakiate
" with eachp,, as the following intersection of half-spaces:

S, ={we RE . A, wte, <0,veV,}. (8) N So,.. (6.8, NS, In Fig. 3). In this formulation
VEVy | . .
A,, , above denotes the, ., rows of A, likewise fore,, ,. @ pointp, qualifies as a member df,, if at least one

Let W, be the matrix corresponding 3,. A contact point of its primitive wrenchesw,(p,) lies in this intersection.
p, qualifies as a member of the independent contact regidiis makes no difference in the frictionless case. However,
C,, if there exist convex combinations of primitive wrenchegncreasing the friction coefficient causes this intersection to

W, inside each regiot,, ,, or formally: “move away” from the OWS and can result in smaller or even
. empty contact region§,,. To illustrate the influence of the
Cn ={p, : Ja, ER" st. (Wia) €S, , choice of search regions, an example of a four-fingered grasp

VEV,, 0,>0, |layllL, =1} (9) on a discretized ellipse is shown in Fig. 4 (the example is



®  Original grasping pointp,, n -
®  Pointsp, with primitive wrenches in allS,, , Algorithm 1: ICR computation

O  Pointsp, with at least one primitive wrench in() S,, ,
vEV,

1 Compute the GWS using equation (5)

1F w ] 2 Generate thé{-representation of the GWS
o - 3 Definegn,v, Yv € Vi
o ° . 4 Determinee,, h=1,....H
05 e° °. 5 for n < 1to N do [+ 1.e. for each contact pointc G */
o L 6 Initialize: €% « 0 for s =1,...,S, seti + 1, j + 1
B 7 el « p,, (includep,, in Cn)
or . 8 | whilei<jdo
ol o 9 for all neighbors of ¢\ do
o5t of ] 10 g + index of a neighbor ot’{”
[ ] [ ] N . ( )
e .. 11 if p,, is not explored (i.e. £, = 0) then
1l T e | 12 &9 « 1/« setthe current point as explored/
2 15 3 05 o 05 p 15 > 13 if Inc!usor?Tedst (pgy) then
. . s ) 14 Je—i+1
Fig. 4. ICR'sfor a planar grasp on an ellipse: The ellipse is discretized 15 )
with 60 points. Each contact friction cone is approximatedtwo edges, " Py
the friction coefficienty = 0.2. —
16 | i+l

adapted from [13], Section IV-A). In fact, choosing a fragti

coefficient of u > 0.27 is causing empty regions, for the ~ Algorithm 2: InclusionTest with a linear program
given example if search regions af) S,, , are utilized.

1 for all search regions S,,, , associated with p,, do

vEVn 2 Solve the following linear program:
B. Computation algorithm minimize =
. .. . . o, R zER
Here we give an efficient algorithm for the computation 9mm -
subject to A,,, ,Wyay + €, , < 2[1,...,1]

of ICR based on equation (9). Note that the sequence in
which candidate points are evaluated does not matter, since
the regionsC,, are computed independently. The generas if z> 0 then

structure is presented in Algorithm 1, while two options for* | L retum false /> test for inclusion inC,, has failed +/
the inclusion test in search regiods, & are presented in s retun true / * test for inclusion inC,, has succeeded /
Algorithms 2 and 3. Algorithm 1 starts by evaluating the
GWS andg, , from equation (7). Since we defined, , Algorithm 3 : InclusionTest with primitive wrenches only
only with respect to vertex points, it can be formed Simply; for all search regions S, , associated with p,, do

llagllL, =1, ag >0

by using the indices of points that comprise the facets of setl+ 1, f+ 1

the convex hull. In case of a non-trivial TWS, in lidee, 3 | Whiel<Landf=1do

] . . 4 r < Ag, ,wi(P,) + €on o

is computed by forming the dot products of all disturbanceg if max(r) < 0 then ’

wrenches withn;, and settinge;, equal to the largest one. & | f«<o0

If the TWS is a sphere, the distancegsh =1,...,H) are 7 lel+1

set to be equal to the radius of the sphere. Starting with the | it ¢ — 1 then

grasping pointg,, of the original grasp, neighboring points 9 | retun false /= test for inclusion inC,, has failed »/
are evaluated according to equation (9). In order to keep | retun true /= test for inclusion inC,, has succeeded /

track of already explored points, we define tNesetsé&,,:

£ _ 1 if p, has been explored for inclusion @), A. Benchmark
m ] 0 if p, has not been explored for inclusion df

The benchmark was conducted by generating random 4-
Note that in the inclusion test given in Algorithm 3, infingered frictional force closure grasps while varying the
step 4, we do not need to carry out the whole matrix vectdriction cone discretizationl € {6,8,10} and the friction
product, since if the product of one row df, , andw;(p,) coefficient x € {0.2,0.5,0.8}. As a TWS, the largest
turns out to be positive, the rest of the computation can basphere of the GWS, scaled by a factor= 0.75 was used.
truncated for the current iterate We compared the performance of the inclusion tests utgizin
the linear programming approach (LPA) in Algorithm 2
and the primitive wrench approach (PWA) in Algorithm 3,
The Algorithm was implemented in Matlab and tested omespectively. The results are summarized in Table |. For
a PC comprising a Core 2 Duo 2.9-GHz processor. As a telstw friction coefficients i, there is not much difference
object, the model of a cup in Fig 1 was used. It is sampleckgarding the average number of total ICR-points. However,
with a number ofS = 2911 vertices, which are meshed by with increasing friction coefficient the LPA is able to ddtec
5822 triangles. The “GNU Linear Programming Kit” [18] significantly more points. Furthermore, the PWA is more
was used to solve the linear program in Algorithm 2, convegensitive to the chosen friction cone discretizatibnThe
hulls were computed using the “Qhull”-package [19]. average computation times for the PWA are substantially

IV. NUMERICALLY EVALUATED RESULTS



COMPARISON BETWEENLP AND PW-APPROACH FORLIO00ORANDOMLY
GENERATED4-FINGER FORCE CLOSURE GRASPS

TABLE |

frictionless point contact, point contact with frictioncasoft-
finger contact. Furthermore, a geometrical analysis ofckear
regions in wrench space, suitable for the computation of in-
dependent regions, is provided. The computational effigien
of the approach is shown by means of an example including

L=6
ICRp = 18.74 TCRpy = 15.35
p=0.2 T, p = 0.94s Tpw = 0.08s
max(ty p) = 4.02s max(tpyy) = 0.12s
TCRpp = 36.04 TCRpy, = 26.03
p=0.5 T, p = 1.47s Tpw = 0.08s
max(ty p) = 4.77s max(tpyy) = 0.14s
ICRpp = 4A7.78 ICRpy = 31.76
n=0.38 trp =1.77s tpw = 0.09
max(ty, p) = 5.86s max(tpyy) = 0.19s
L=38
TCRpp = 19.14 TCRpy = 16.53
uw=0.2 i p = 1.61s tpw = 0.15s
max(ty, p) = 6.48s max(tpyy) = 0.22s
TCRpp = 40.52 TCRpy = 31.96 (2]
pn=0.5 T p = 2.75s Tpw = 0.16s
max(ty, p) = 10.96s max(tpyy) = 0.27s 3]
ICRp p = 52.43 ICRpy = 39.74
n=0.8 T, p = 3.68s Tpw = 0.17s
max(ty, p) = 12.10s | max(tpy ) = 0.26s [4]
L =10
TCRpp = 19.59 TCRpy = 17.49
p=0.2 T, p = 2.36s Tpw = 0.25s [5]
max(ty p) = 8.89s max(tpyy) = 0.47s
TCRp = 41.61 TCRpy = 34.69
p=0.5 T, p = 4.96s tpw = 0.27s [6]
max(ty p) = 16.53s max(tpyy) = 0.43s
ICRpp = 54.80 TICRpy, = 44.00
p=0.38 Ty p = 7.15s Tpw = 0.29s (7]
max(ty, p) = 22.48s max(tpyy) = 0.44s
ﬁLP/PW —  average number of overall ICR-points [8]
T average computation time

LP/PW  —

max(tLP/PW) - maximum computation time

9
lower than for the LPA. For the latter, especially the high[ !
maximal computation times are significant. It is evidenatth [10]
choosing between LPA and PWA is a trade-off between
accuracy and computational effort. However, utilizing the
PWA with a high discretizatior. gives a good compromise. [

B. Example

We give an example of ICR computation for a 4-fingeredt2]
frictional grasp of the cup in Fig. 1. The TWS was modeled
as the OW$% with scaled force domain in order to protect[13]
against gravity as well (see Section II-E). In order to deter
mine ICR, the PWA with following parameters was utilized:[14]
p=08 L=8, Fg =10, Fp = 0.6 and Fy,.,, = 1.5. A
total number 0652 ICR-points were found. The computation 15]
time evaluated t0.41s. This shows, that even for non-trivial
task wrench spaces, independent regions can be efficiently
computed with the proposed algorithm. (16]

V. CONCLUSION (17]

In this work, an efficient and parallelizable algorithm[18]
for the computation of independent regions on discretizeﬁ
3-D objects is presented. The suggested method allows the
incorporation of disturbance wrench sets, corresponding t
a given task. Following contact models can be applied:

non-trivial disturbances.
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