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Abstract— Since the introduction of independent contact
regions in order to compensate for shortcomings in the po-
sitioning accuracy of robotic hands, alternative methods for
their generation have been proposed. Due to the fact that (in
general) such regions are not unique, the computation methods
used usually reflect the envisioned application and/or under-
lying assumptions made. This paper introduces a parallelizable
algorithm for the efficient computation of independent contact
regions, under the assumption that a user input in the form
of initial guess for the grasping points is readily available.
The proposed approach works on discretized 3D-objects with
any number of contacts and can be used with any of the
following models: frictionless point contact, point contact with
friction and soft finger contact. An example of the computation
of independent contact regions comprising a non-trivial task
wrench space is given.

I. I NTRODUCTION

Evaluating the “goodness” of a given multifingered grasp
while accounting for the capabilities of the grasping device
is an important issue in dexterous manipulation. For a
large class of grasps the force closure property is desirable.
Loosely speaking, force closure means the ability of the
grasp to immobilize the grasped object influenced by an
arbitrary external disturbance, if the manipulator is capable
of exerting sufficiently large contact forces on the object [1].
Contact force vectors and resulting torque vectors are com-
monly concatenated to wrench vectors. Mishra et al. [2]
showed that a grasp is force closure, if the convex hull
spanned by the contact wrenches contains a neighborhood
of the origin.

However, in many cases force closure is just a necessary,
and not a sufficient requirement. Usually it is desirable to
specify additional conditions in order to evaluate a grasp.
There are many quality measures proposed in the literature
(see [3] for a survey). A good grasp should be able to
efficiently withstand forces, which are likely to occur during
the performed task. If nothing about the task is known, a
common measure is the radius of the largest origin-centered
insphere of theGrasp Wrench Space (GWS), which was
proposed by Kirkpatrick et al. [4]. The GWS is defined
as the convex hull over the set of all wrenches that the
manipulator can exert on the object for a given grasp. In this
definition it is presumed that the sum of the magnitude of the
grasping forces is bounded. Ferrari and Canny [5] introduced
the physically more relevant convex hull over the Minkowski
sum of the grasp wrenches. This implies that no more than
a force of a given magnitude is applied at each grasping
point. A way to incorporate the whole object geometry

into the grasp assessment was suggested by Pollard [6].
She introduces theObject Wrench Space (OWS) (which
represents the best possible grasp), and formulates a quality
measure as the scale of the largest OWS that fits entirely in
the GWS. Several works have integrated disturbance forces
on the object geometry in the grasp evaluation [6][7][8].

From the viewpoint of a mechanic manipulator, not only
the ability to resist disturbances, but also the robustness
of a grasp is an important factor. Grasps which are less
sensitive to modeling and positioning errors are desirable.
In this context, the notion ofIndependent Contact Regions
(ICR) was suggested by Nguyen [9]. He defined the set
of optimal independent regions with the largest minimal
radius, which yield a force closure-grasp if each finger is
placed anywhere within its respective region. The concept
was extended to the computation of independent regions for
three-finger grasps on planar objects [10], and four-finger
grasps of polyhedral objects by Ponce et al. [11]. The latter
approach has a number of drawbacks: (i) three conditions for
force closure are presented, however, two are disregarded in
the later analysis due to their nonlinear structure, leading to
the possibility of excluding viable candidate regions; (ii) it is
not clear, how to compute ICR given a bound on the possible
disturbance wrenches; (iii) it is unclear, how the approach
could be extended to five or more fingers. The above prob-
lems were addressed by Pollard in [12], where the synthesis
of grasps on 3-D objects with a large number of contacts
is discussed. Furthermore, a task related quality measure
is incorporated in the evaluation of ICR. The computation
is based on geometric reasoning in the wrench space and
requires the solution of a Linear Programming problem (LP).
Still, a detailed discussion of an efficient algorithm for the
generation of ICR is not presented. Roa and Suárez [13]
suggested an algorithm, which grows independent regions
for precision grasps on discretized objects. However, their
method is very sensitive to the choice of friction coefficient
and more restrictive than the approach presented in [12].

In this work, an in-depth analysis about the geometric
relations in the context of independent contact regions is pro-
vided, along with an extension of the approaches presented
in [12] and [13]. We introduce an efficient parallelizable
algorithm for determining ICR for a given fixed set of
contact points on discretized 3D-objects with any number
N of contacts which satisfy the force closure condition.
The algorithm is capable of determining the regions for a
non-trivial disturbance wrench set and can be used with:



frictionless point contact, point contact with friction and soft
finger contact models.

The assumptions and required background are provided
in Section II. In Section III we present our efficient algo-
rithm for computing independent contact regions and finally
Section IV contains a numerical evaluation.

II. BACKGROUND

A. Nomenclature
N number of contact points in a grasp,
S number of points on the surface of an object,
L number of wrenches used in a contact model,
H number of hyperplanes bounding a convex hull,
n index used for points in a given grasp,
s index used for points on the surface of the object,
l index used for wrenches in a contact model,
h index used for hyperplanes.

Bold letters are used to denote matrices and vectors. The
ith element of a setC is denoted byC(i).

B. Assumptions & Problem Description

A sufficiently discretized representation of the target
objects surface, given as a polygonal mesh of points
ps (s = 1, ..., S) with corresponding inward-pointing unit
normalsn̂s is required. The reference frame is fixed in the
Center of Mass (CoM) of the object. Each pointps has asso-
ciated neighboring points, defined as the ones connected to
ps by an edge of the mesh. We presume, that a “reasonable”
set of tasksTt (t = 1, ..., T ) is specified as sets of disturbance
wrenches, which needs to be resisted by the grasp. An initial
force closure grasp, able to withstand the Minkowski sum of
the given sets of disturbance wrenchesTt is provided. Such
a grasp is defined as a set ofN contact points on the objects
surfaceG = {p1, · · · ,pN}. The necessary starting grasp
could be acquired by means of human demonstration or by
one of the algorithms proposed for the synthesis of force
closure grasps [13][14]. Furthermore, quasi-static conditions
are assumed.

We are interested in the computation of ICR, defined as
the N independent regionsCn, each one associated with a
contact pointpn of the original force closure grasp. The
setsCn contain points on the target objects surface, each
of which can replacepn in G. Any grasp composed ofN
contact points, where one point is picked from each region
Cn, will be force closure and preserve the task requirements.
An example of ICR for a four-fingered frictional grasp on
the model of a cup is shown in Fig. 1.

C. Application

If expected disturbances are represented as a meaningful
set of tasks, the size of the independent regions can be
directly related to the required positioning accuracy. If each
finger “aims” at the center of its respective region, larger
ICR provide increased robustness to finger positioning errors.
Kim et al. [15] formalized this notion by introducing the
Uncertainty Grasp Index, which is described as the sum of

Fig. 1. Independent Contact Regions: Red squares represent the original
grasping points, blue squares the independent contact regions. The regions
are computed considering possible disturbances specified in Section IV-B,
utilizing frictional hard-finger contacts.

the distances between the grasping points and the center of
the corresponding independent region.

D. Contact Models

We first considerfrictional point contacts between the
target object and the fingers of the gripper. The friction-
coefficient according the Coulomb friction model is denoted
as µ. In order to prevent slipping, a forcefs applied at a
point ps has to fulfill the following constraint:

||fs − (f s · n̂s)n̂s|| ≤ µ(n̂s · fs). (1)

This describes a nonlinear friction cone, which can be
approximated by aL-sided convex polyhedron. The set
of forces with magnitudeFG along theL edges of the
discretized cone located at contact pointps is denoted in
matrix notation asF s = [f1(ps), · · · ,fL(ps)]. Thus, the
grasping forcefs is given by:

fs = F sαs, αs ≥ 0, ||αs||L1 ≤ 1. (2)

The forcefs creates a torqueτ s = (ps × fs). Force and
torque vectors can be concatenated to a wrench vectorws:

ws =

(

fs

τ s/λ

)

, λ = max
s

(||ps||). (3)

Dividing the torque parts by the largest possible torque arm
λ guarantees scale invariance [6]. The wrenches generated
by forcesf l along an edge of the discretized friction cone
are referred to asprimitive wrenches. For a given contact
point ps, the set of primitive wrenches is defined as:

Ws = {w1(ps), · · · ,wL(ps)}. (4)

The soft finger contact model according to [16] allows
for additional torsional moments around the local contact
normaln̂s. Here, the set of primitive wrenches in Equation 4



needs to be supplemented by the according wrenches. In the
soft finger contact model, scaling the wrench vectors by the
largest possible torque armλ does not grant scale-invariance
any more. This is due to the fact, that the additional wrenches
do not depend on the object geometry. Still, scaling imparts
invariance to the chosen units of length.

In the case of thefrictionless point contact model, the
friction coefficientµ is zero andfs acts along the surface
normal. In this case, the setWs just holds one wrench
generated by the respective normal force. Given a Grasp
G, the discrete GWS is described by the convex hull over
the union of theN primitive wrench sets belonging to the
grasping pointspn:

GWS= CH
(

⋃

{W1, · · · ,WN}
)

. (5)

Equation (5) characterizes the space of wrenches, which
can be exerted to the grasped object when the sum of the
magnitudes of all finger forces is bounded by a valueFG.
Since the applied forces are proportional to the current in the
actuators, this can be seen as a limitation due to a common
power source [5].

E. Task Model

Tasks are represented as sets of disturbance wrenches
which needs to be resisted. GivenT tasksTt, we denote
the Task Wrench Space (TWS) as the convex hull over the
Minkowski sum of the tasks:

TWS= CH
(

⊕

{T1, · · · , TT }
)

. (6)

One frequently used representation of the TWS is the largest
origin-centered insphere of the GWS. Yet, this gives only
weak protection against disturbance forces on the extreme
parts of the object geometry and might pose unnecessary
restrictions by protecting against disturbances which are
unlikely to occur. A physically better motivated way to
describe a taskTt, is by wrenches resulting from a maximum
number of S possible disturbance forces, which can act
on any pointps on the objects surface. The sum of the
magnitudes of all disturbance forces is denoted asFD, which
has to be smaller or equalFG. This way of modeling a
task is equivalent to a scaled OWS [6] and shall be denoted
as OWSD. It is presumed, that the disturbance forces are
caused by frictionless point contacts of the object with the
environment. Assuming a sufficiently high discretization of
the object, wrenches resulting from frictional contact maybe
contained in OWSD nevertheless. Otherwise they can easily
be added [6].

Combining multiple independent tasks usually involves
the computationally expensive Minkowski sum according to
Equation (6). However, Borst et al. [8] have shown, that
disturbances caused by the gravitational forceFgrav can
easily be incorporated in the OWSD. If the CoM is used as
torque origin, the OWSD as well as the gravitational forces
are tightly enclosed by a sphere in the force domain. Thus,
it is possible to simply scale the force domain of the OWSD

by a factor(1+Fgrav/FD), in order to consider disturbances
caused by gravity as well.

III. I NDEPENDENTCONTACT REGIONS

Let theH-representation of the convex hull defined in (5)
be given as(A, b), whereA = [n1, ...,nH ]T ∈ R

H×K is
a matrix containing the inward-pointing unit normals to the
bounding hyperplanes. The vectorb = [b1, ..., bH ]T ∈ R

H

contains the distances to the origin.K = 3 if the object
to be grasped is planar, andK = 6 when the object is
three dimensional. From our assumptions it follows that the
convex hull associated with the TWS will be contained in the
GWS ofG. Hence, for all disturbance wrencheswd ∈ TWS,
Awd + b ≥ 0. We definebh − ǫh as the distance from
the hth hyperplane to the TWS,i.e. the hyperplane defined
by (nh, ǫh) is tangent to the TWS. The distancesǫh are
combined in the vectorǫ = [ǫ1, ..., ǫH ]T ∈ R

H .
In addition to theH-representation of the GWS, we need

to define sets of indices̺n,v, one for eachwl(pn) that is a
vertex in the GWS. LetVn be a set containing the indices
of the vertices (in the GWS) associated withpn. Clearly, the
number of elements inVn is smaller or equal toL.

̺n,v = {h : nT
hwv(pn) + bh = 0 , v ∈ Vn}. (7)

Thus,h ∈ ̺n,v andv ∈ Vn imply, that the wrenchwv(pn)

is a vertex and lies on thehth hyperplane (Hh). Let us
denote the independent contact region associated with
pn by Cn. By definition, Cn will contain points each of
which can replacepn in G and still preserve the task
requirements. This implies that the convex hull spanned by
the wrenches associated with any point inCn, combined
with the wrenches associated withN − 1 points, each
chosen from one of the otherN − 1 independent regions,
will contain the task disturbances. Adding a new pointps

to Cn by using a brute-force approach and testing whether
bh − ǫh ≥ 0, ∀h (which requires the re-computation of
(5)), for all possible grasps with points already in the other
independent regions is not feasible. Instead, by defining
search regions directly in the wrench space, Pollard [12]
presented an easy to evaluate criterion for adding points
in a given independent contact region. Figure 2 illustrates
the core idea, which is based on geometric reasoning. It
shows the convex hullCH(X ), spanned by vectorsxi

(X = {x1 · · ·xI}), containing the origin. By convexity,
CH(X ) is fully contained in one of the half-spaces defined
by the hyperplaneHf , corresponding to facetf . Facetf
is said to belong to thevisible region of a point x̂i if that
point lies in the half-space ofHf not including the origin
(i.e. x̂i “sees” f ) [17]. Let Si be the intersection of all
half-spaces defined by hyperplanes corresponding to facets
which containxi, so thatSi does not contain the origin.

Proposition 1:
(a) CH(X ) ⊆ CH({X\xi, x̂i}) if all visible facets from

xi are visible from x̂i.
(b) The convex hull of multiple sets containing CH(X )

contains CH(X ).

Proposition 1-a states, that the convex hull resulting from
replacing a vertexxi with a point x̂i will fully contain



x̂1

x1

x2 x3

x4

x5

S1

⋂

S2

S1

S2

S4Hf

Fig. 2. Visible Region: The yellow facets denote the visible region from
the pointx̂1 on CH(X ). According to Proposition 1, pointx1 can safely
be substituted bŷx1. Pointsx1 andx2 can simultaneously replaced by a
point lying in the intersection of search regionsS1 andS2.

CH(X ), if the visible region ofxi on CH(X ) is seen by
x̂i as well. This is the case for anŷxi ∈ Si [17]. Note
that it is possible for̂xi to see more facets ofCH(X ) than
xi. Proposition 1-b is a direct consequence of convexity.
According to the above Proposition, pointx̂1 in Fig. 2 can
safely substitutex1 while preservingCH(X ). One point in
the intersectionS1

⋂

S2 is sufficient to replacex1 andx2

simultaneously.
In this light, the requirements for a point on a target

objects surface to be included in one of the independent
regions are illustrated in Fig. 3. Shown are the convex hulls
of a three-fingered frictional grasp and a respective task in
a hypothetical two-dimensional wrench space. In order for a
candidate pointps to qualify as a member ofCn, the TWS
has to be fully contained in the GWS resulting from replacing
the primitive wrencheswv(pn) with the primitive wrenches
corresponding tops. For example, the condition for a point
ps to be included in the independent regionC1 is that there
have to exist possible convex combinations of the primitive
wrencheswl(ps) inside both search regionsS̺1,1 andS̺1,2 .
If this condition is satisfied,ps can replace the original
grasping pointp1 according to Proposition 1. The search
region S̺1,1 is built by the intersection of the half-spaces
defined by hyperplanes parallel to facets containingw1(p1)
and tangent to the TWS, so thatS̺1,1 does not contain the
origin (S̺1,2 is defined accordingly). Note that Proposition
1 is also satisfied if there exists a convex combination of the
primitive wrencheswl(ps) in the intersectionS̺1,1

⋂

S̺1,2 .
The general definition of search spacesS̺n,v is as follows:

S̺n,v = {w ∈ R
K : A̺n,vw + ǫ̺n,v ≤ 0 , v ∈ Vn}. (8)

A̺n,v above denotes the̺n,v rows ofA, likewise forǫ̺n,v .
Let W s be the matrix corresponding toWs. A contact point
ps qualifies as a member of the independent contact region
Cn, if there exist convex combinations of primitive wrenches
W s inside each regionS̺n,v , or formally:

Cn = {ps : ∃αv ∈ R
L s.t. (W sαv) ∈ S̺n,v

v ∈ Vn, αv ≥ 0, ||αv||L1 = 1}. (9)

w1(p1)

w2(p1)
w1(p2)

w2(p2)

w1(p3)

w2(p3)

TWS

H1

H2

H3

S̺1,1

S̺1,2

S̺1,1

⋂

S̺1,2

ǫ2

b2 − ǫ2

Fig. 3. Search regions for C1: Abstract 2-dimensional GWS, showing valid
locations for primitive wrenches, so that the associated point in task space∈
C1. A friction cone discretization ofL = 2 is assumed. The red lines denote
valid convex combinations of the primitive wrenches, whichare shown as
red squares. Contact points associated with the primitive wrenches depicted
as blue squares, as well as the primitive wrench illustratedas a yellow square
also can replacep1 without violating the TWS. Note that all primitive
wrenches (with the possible exception of those stemming from torsional
moments in case of soft finger contact) lie on the boundary of the OWS,
which cannot be adequately represented in two dimensions. Furthermore,
the primitive wrencheswv(pn) corresponding to contact pointspn are
connected by ridges of the convex hull, which are depicted inthe same line
style as facets.

A. Previous approaches

Here, we want to provide a brief discussion of the sug-
gestions presented by Pollard [12] and Roa and Suárez [13]
and compare it to our approach. Pollard provides the idea
of spanning search spaces belonging to primitive wrenches
of the GWS. However, no algorithm for the computation of
independent regions is provided, and search spaces corre-
sponding toevery wrenchwl(pn) are defined. Compared
to the search regions formulated in Eq. (8), this is disad-
vantageous from a computational point of view, because not
necessarily everywl(pn) is a vertex of the GWS since some
may lie on the boundary or, in case of the soft finger contact
model, inside the GWS. Hence, the approach in [12] can
produce more search regions than necessary, which have to
be evaluated.

Roa and Suárez [13] simplify the search problem, by
exclusively checking primitive wrencheswl(ps) for the
inclusion in the respective search regions, instead of their
convex combination. This might lead to the exclusion of
some viable contact points, but is computationally more effi-
cient. However, they define only one search region associated
with eachpn as the following intersection of half-spaces:
⋂

v∈Vn

S̺n,v (i.e. S̺1,1

⋂

S̺1,2 in Fig. 3). In this formulation

a point ps qualifies as a member ofCn, if at least one
of its primitive wrencheswl(ps) lies in this intersection.
This makes no difference in the frictionless case. However,
increasing the friction coefficientµ causes this intersection to
“move away” from the OWS and can result in smaller or even
empty contact regionsCn. To illustrate the influence of the
choice of search regions, an example of a four-fingered grasp
on a discretized ellipse is shown in Fig. 4 (the example is
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Fig. 4. ICR’s for a planar grasp on an ellipse: The ellipse is discretized
with 60 points. Each contact friction cone is approximated by two edges,
the friction coefficientµ = 0.2.

adapted from [13], Section IV-A). In fact, choosing a friction
coefficient ofµ ≥ 0.27 is causing empty regionsCn for the
given example if search regions as

⋂

v∈Vn

S̺n,v are utilized.

B. Computation algorithm

Here we give an efficient algorithm for the computation
of ICR based on equation (9). Note that the sequence in
which candidate points are evaluated does not matter, since
the regionsCn are computed independently. The general
structure is presented in Algorithm 1, while two options for
the inclusion test in search regionsS̺n,v are presented in
Algorithms 2 and 3. Algorithm 1 starts by evaluating the
GWS and̺n,v from equation (7). Since we defined̺n,v
only with respect to vertex points, it can be formed simply
by using the indices of points that comprise the facets of
the convex hull. In case of a non-trivial TWS, in line3, ǫh
is computed by forming the dot products of all disturbance
wrenches withnh and settingǫh equal to the largest one.
If the TWS is a sphere, the distancesǫh(h = 1, . . . , H) are
set to be equal to the radius of the sphere. Starting with the
grasping pointspn of the original grasp, neighboring points
are evaluated according to equation (9). In order to keep
track of already explored points, we define theN setsEn:

E(s)
n =

{

1 if ps has been explored for inclusion inCn
0 if ps has not been explored for inclusion inCn

Note that in the inclusion test given in Algorithm 3, in
step 4, we do not need to carry out the whole matrix vector
product, since if the product of one row ofA̺n,v andwl(pg)
turns out to be positive, the rest of the computation can be
truncated for the current iteratel.

IV. N UMERICALLY EVALUATED RESULTS

The Algorithm was implemented in Matlab and tested on
a PC comprising a Core 2 Duo 2.9-GHz processor. As a test
object, the model of a cup in Fig 1 was used. It is sampled
with a number ofS = 2911 vertices, which are meshed by
5822 triangles. The “GNU Linear Programming Kit” [18]
was used to solve the linear program in Algorithm 2, convex
hulls were computed using the “Qhull”-package [19].

Algorithm 1 : ICR computation
Compute the GWS using equation (5)1
Generate theH-representation of the GWS2
Define̺n,v , ∀v ∈ Vn3
Determineǫh, h = 1, ...,H4
for n← 1 to N do /* i.e. for each contact point∈ G */5

Initialize: E(s)n ← 0 for s = 1, ..., S, seti← 1, j ← 16

C
(i)
n ← pn (includepn in Cn)7

while i ≤ j do8

for all neighbors of C(i)n do9

g ← index of a neighbor ofC(i)n10

if pg is not explored (i.e. E(g)n = 0) then11

E
(g)
n ← 1/* set the current point as explored*/12

if InclusionTest (pg) then13
j ← j + 114

C
(j)
n ← pg15

i← i+ 116

Algorithm 2 : InclusionTest with a linear program
for all search regions S̺n,l associated with pn do1

Solve the following linear program:2

minimize
αg∈RL, z∈R

z

subject to A̺n,vW gαg + ǫ̺n,v ≤ z[1, . . . , 1]T

||αg||L1
= 1, αg ≥ 0

if z > 0 then3
return false /* test for inclusion inCn has failed */4

return true /* test for inclusion inCn has succeeded*/5

Algorithm 3 : InclusionTest with primitive wrenches only
for all search regions S̺n,v associated with pn do1

set l← 1, f ← 12
while l ≤ L and f = 1 do3

r ← A̺n,vwl(pg) + ǫ̺n,v4
if max(r) ≤ 0 then5

f ← 06

l← l + 17

if f = 1 then8
return false /* test for inclusion inCn has failed */9

return true /* test for inclusion inCn has succeeded*/10

A. Benchmark

The benchmark was conducted by generating random 4-
fingered frictional force closure grasps while varying the
friction cone discretizationL ∈ {6, 8, 10} and the friction
coefficient µ ∈ {0.2, 0.5, 0.8}. As a TWS, the largest
insphere of the GWS, scaled by a factorα = 0.75 was used.
We compared the performance of the inclusion tests utilizing
the linear programming approach (LPA) in Algorithm 2
and the primitive wrench approach (PWA) in Algorithm 3,
respectively. The results are summarized in Table I. For
low friction coefficientsµ, there is not much difference
regarding the average number of total ICR-points. However,
with increasing friction coefficient the LPA is able to detect
significantly more points. Furthermore, the PWA is more
sensitive to the chosen friction cone discretizationL. The
average computation times for the PWA are substantially



TABLE I

COMPARISON BETWEENLP AND PW-APPROACH FOR1000RANDOMLY

GENERATED4-FINGER FORCE CLOSURE GRASPS

L = 6

µ = 0.2

ICRLP = 18.74 ICRPW = 15.35

tLP = 0.94s tPW = 0.08s

max(tLP ) = 4.02s max(tPW ) = 0.12s

µ = 0.5

ICRLP = 36.04 ICRPW = 26.03

tLP = 1.47s tPW = 0.08s

max(tLP ) = 4.77s max(tPW ) = 0.14s

µ = 0.8

ICRLP = 47.78 ICRPW = 31.76

tLP = 1.77s tPW = 0.09

max(tLP ) = 5.86s max(tPW ) = 0.19s

L = 8

µ = 0.2

ICRLP = 19.14 ICRPW = 16.53

tLP = 1.61s tPW = 0.15s

max(tLP ) = 6.48s max(tPW ) = 0.22s

µ = 0.5

ICRLP = 40.52 ICRPW = 31.96

tLP = 2.75s tPW = 0.16s

max(tLP ) = 10.96s max(tPW ) = 0.27s

µ = 0.8

ICRLP = 52.43 ICRPW = 39.74

tLP = 3.68s tPW = 0.17s

max(tLP ) = 12.10s max(tPW ) = 0.26s

L = 10

µ = 0.2

ICRLP = 19.59 ICRPW = 17.49

tLP = 2.36s tPW = 0.25s

max(tLP ) = 8.89s max(tPW ) = 0.47s

µ = 0.5

ICRLP = 41.61 ICRPW = 34.69

tLP = 4.96s tPW = 0.27s

max(tLP ) = 16.53s max(tPW ) = 0.43s

µ = 0.8

ICRLP = 54.80 ICRPW = 44.00

tLP = 7.15s tPW = 0.29s

max(tLP ) = 22.48s max(tPW ) = 0.44s

ICRLP/PW − average number of overall ICR-points

tLP/PW − average computation time

max(tLP/PW ) − maximum computation time

lower than for the LPA. For the latter, especially the high
maximal computation times are significant. It is evident, that
choosing between LPA and PWA is a trade-off between
accuracy and computational effort. However, utilizing the
PWA with a high discretizationL gives a good compromise.

B. Example

We give an example of ICR computation for a 4-fingered
frictional grasp of the cup in Fig. 1. The TWS was modeled
as the OWSD with scaled force domain in order to protect
against gravity as well (see Section II-E). In order to deter-
mine ICR, the PWA with following parameters was utilized:
µ = 0.8, L = 8, FG = 10, FD = 0.6 andFgrav = 1.5. A
total number of52 ICR-points were found. The computation
time evaluated to0.41s. This shows, that even for non-trivial
task wrench spaces, independent regions can be efficiently
computed with the proposed algorithm.

V. CONCLUSION

In this work, an efficient and parallelizable algorithm
for the computation of independent regions on discretized
3-D objects is presented. The suggested method allows the
incorporation of disturbance wrench sets, corresponding to
a given task. Following contact models can be applied:

frictionless point contact, point contact with friction and soft-
finger contact. Furthermore, a geometrical analysis of search
regions in wrench space, suitable for the computation of in-
dependent regions, is provided. The computational efficiency
of the approach is shown by means of an example including
non-trivial disturbances.
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