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Abstract— The concept of independent contact regions on a
target object’s surface, in order to compensate for shortcomings
in the positioning accuracy of robotic grasping devices, iswell
known. However, the numbers and distributions of contact
points forming such regions is not unique and depends on the
underlying computational method. In this work we present a
computation scheme allowing to prioritize contact points for
inclusion in the independent regions. This enables a user to
affect their shape in order to meet the demands of the targeted
application. The introduced method utilizes frictionlesscontact
constraints and is able to efficiently approximate the spaceof
disturbances resistible by all grasps comprising contactswithin
the independent regions.

I. I NTRODUCTION

Accounting for uncertainties occurring in the positioning
of robotic grasping devices is a central topic in dexterous
manipulation research. The quality of a given multifingered
grasp is not only reflected in its capability to withstand ex-
ternal disturbances, but also in its robustness to shortcomings
in the positioning accuracy. An important issue in manu-
facturing and grasping procedures is object immobilization.
In this context, Reuleaux [1] coined the termform-closureas
the ability of a fixturing device to fully prevent motions of
the target object via unilateral frictionless contact constraints.
In contrast,force-closureimparts that the object’s motion is
restrained by suitable contact forces considering frictional
contact constraints [2]. Contact force vectors and result-
ing torque vectors are commonly concatenated to wrench
vectors. Mishra et al. [3] showed that a grasp is force/form-
closure, if the convex hull spanned by the contact wrenches
contains a neighborhood of the origin.

However, for many applications the basic ability to im-
mobilize an object is just a necessary but not a sufficient
requirement. A good grasp should be able to efficiently
withstand disturbance forces/torques which are likely to
occur during the performed task. If nothing about possible
disturbances is known, a common grasp quality measure is
the radius of the largest origin-centered insphere of theGrasp
Wrench Space(GWS), which was proposed by Kirkpatrick
et al. [4]. The GWS is defined as the set of all wrenches that
a manipulator can exert on the object for a given grasp. In
this definition it is presumed that the sum of the magnitude
of the grasping forces is bounded.

From the viewpoint of a grasping device, not only the
ability to resist disturbances, but also the robustness of
a grasp to modeling and positioning inaccuracies is an
important factor. In this context, the notion ofIndependent
Contact Regions(ICRs) was introduced by Nguyen [5]. He

defined the set of optimal independent regions with the
largest minimal radius, which yield a force-closure grasp if
each finger is placed anywhere within its respective region.
The concept was extended to the computation of independent
regions for three-finger grasps on planar objects [6] and
four-finger grasps of polyhedral objects by Ponce et al. [7].
Pollard [8] employs the ICR paradigm in order to synthesize
sets of similar whole-hand grasps on 3-D objects. The
algorithms in [8] are based on geometric reasoning in the
wrench space and incorporate a task related grasp quality
measure. Roa and Suárez [9] suggested an approach which
grows independent regions for precision grasps on discretized
objects. In a previous work [10], the authors presented an
efficient algorithm for the computation of such regions.

The approaches in [8][9][10] have in common that they
utilize a prototype form/force-closure grasp and specify
disturbances which need to be resisted. Eligible contact
constraints can be formulated via frictionless/frictional or
soft finger point contact models. ICRs are not unique with
respect to the numbers and distributions of contact points
forming the regions. Frequently, contact regions yielded by
current methods are shaped undesirably. This is due to the
fact that the underlying computational principle strongly
conditions the shape of the resulting contact regions on the
GWS of the given prototype grasp.

In this paper, we address the question of how to produce
regions which are shaped to befit the considered application.
For example regions comprising evenly distributed contact
points are often attractive, since such uniform regions can
be directly related to the positioning accuracy achievable
by the deployed grasping device. Contributed is the idea of
prioritizing contact points for inclusion in the ICRs. We limit
ourselves to the form-closure case and utilize the frictionless
point contact model. A computational method, which allows
for a user to specify a suitable strategy for including contact
points in the ICRs in order to form desired regions, is
suggested. This novel approach allows to evaluate the actual
disturbances every member of the grasp set associated with
the ICRs is able to resist. To this end, we introduce the
Exertable Wrench Space(EWS) as a generalization of the
GWS applied to sets of grasps.

The assumptions and required background are provided
in Section II. In sections III and IV we motivate and
detail our computation scheme. Section V discusses possible
prioritization strategies and finally in Section VI we provide
a numerical evaluation of the suggested approach.



II. BACKGROUND

A. Nomenclature

S Set of position vectors representing the target object,
s index used for the points representing the object,
N number of contact points in a grasp / number of ICRs,
gn index used for theN grasp contact points,

Cn set of contact points forming thenth ICR,
Ĉn set containing the indexesc of the points in regionCn,
Wn set of wrenches associated with the contact points inCn,
H number of hyperplanes confining a convex hull,
h index used for hyperplanes,
K dimension of the wrench space.

B. Assumptions & Problem Description

The target object’s surface is described as a polygonal
mesh (or a polygonal chain in the case of planar objects)
whose vertices are represented by the setS = {p

1
, . . .pS}.

The position vectorsps ∈ S are expressed in a coordinate
frame which is located in the center of mass of the object.
Each pointps has an associated inward-pointing unit normal
n̂s and neighboring points, defined as the ones connected to
ps by an edge of the mesh. Thus, this representation can be
seen as a graph where nodes represent mesh verticesps and
edges define the neighboring relation between these vertices.
A graspG = {pg1

, . . . ,pgN
: pgn

∈ S} is represented as a
set of N contact points. ICRs are specified asN setsCn
which contain points on the target object’s surface. Each
finger of a grasping device is associated with one such
region. Form-closure grasps, which comprise one contact
drawn from each regionCn and are suitable to resist expected
disturbances (see Section II-D), are denoted asviable grasps.
It is assumed that the target object is sufficiently discretized
to capture local curvature,i. e., grasps with contacts on mesh
facets spanned by the discrete points forming regionsCn
are also viable grasps. We presume that user-input in form
of an initial viable graspGinit is available. The necessary
prototype grasp can be acquired by one of the many algo-
rithms proposed for grasp synthesis (e.g. [9][11]) or by an
expert demonstrator. Furthermore, quasi-static conditions are
assumed and the kinematic constraints of the device grasping
the target object are not considered.

The aim of this work is to allow a user to influence the
distribution of contact points within the regionsCn, i. e.,
to affect their shape on the target object’s boundary. In
addition to the necessary initial graspGinit and expected
disturbances, we consider two possible user inputs. First,we
want to investigate what is the set of disturbances that every
viable grasp is guaranteed to resist, if desired regionsCn
themselves are defined by a user beforehand. An example of
predefined ICRs for an eight-fingered grasp on the model of
a parallelepiped is shown in Fig. 1. Second, we are interested
in prioritizing contact points for inclusion in regionsCn
according to a user-provided logic.

Ginit
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Fig. 1. Predefined Contact Regions on a parallelepiped:Uniform regions
Cn for an 8-fingered grasp; Contact points in the RegionsCn are specified
via a BFS, stopping at a depth of one (see Section V-A); Form-closure of
all viable grasps was verified utilizing Algorithm 1;

C. Contact Model

We consider frictionless point contacts between the target
object and the fingers of the gripper. The forcefs applied
at point ps acts along the normal̂ns and creates a torque
τ s = ps×fs. Force and torque vectors can be concatenated
to a wrench vectorws = (f s, τ s/λ). Dividing the torque
parts by the largest possible torque armλ = max

s
(||ps||)

grants scale invariance [12]. Let̂Cn be the set containing
indexes of the contact points forming thenth independent
region. Thereby, the region formed by these contact points
can be formalized asCn = {pc : c ∈ Ĉn}. The corresponding
wrench set is defined as

Wn = {w(pc) : c ∈ Ĉn}. (1)

Given a graspG, the discrete grasp wrench space in the
frictionless case is described by the convex hull over theN
wrenches generated at the grasping pointspgn

.

GWS= ConvHull
(
{w(pg1

), . . . ,w(pgN
)}
)
. (2)

Note that we assume convex hulls to be in simplicial form.
Equation (2) characterizes the space of wrenches, which
can be exerted to the grasped object when the sum of the
magnitudes of all finger forces is bounded. All wrenches lie
on the Limit Wrench Space(LWS) [12], which is limited
only by the magnitude of the contact forces (unit magnitude
in the present case) and the resulting torques.

D. State of the art

Recent approaches for generating ICRs [8][9][10] allow
for user-input in form of a set comprising expected distur-
bance wrenches. The convex hull over the mirror image of
this set is commonly labeled asTask Wrench Space(TWS). It
represents the set of wrenches which every viable grasp has
to be able to exert on the object in order to counterbalance
the expected disturbances and is frequently represented as
an origin-centered sphere. Figure 2 illustrates the basic
principle of the current methods. Shown is the computation
procedure in a hypothetical 2-D wrench space for a four-
fingered frictionless grasp. The ICRs obtained depend on
the geometric properties of the grasp wrench space GWSinit ,
corresponding to a provided initial prototype force-closure
graspGinit , and the disturbances considered via the TWS. By
construction, the TWS is a subset of the space of wrenches
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Fig. 2. Forming search regions via parallel shifting: (a) Wrenches
associated with the initial graspGinit ; (b) The corresponding GWSinit
and its confining hyperplanes; (c) The TWS represents the setof wrenches
necessary to counterbalance expected disturbances; Hyperplanes associated
with facets of GWSinit are translated in parallel until they are tangent to
the TWS; Search spaces (the yellow shaded areas) in the wrench space
are formed by the intersection of exterior half-spaces1 corresponding to
the shifted hyperplanes; A pointps on the object’s boundary qualifies for
inclusion in regionCn if its associated wrench lies in the search space
associated withpgn

; RegionsCn on the object’s surface are formed by the
contact points with associated wrenches in the setsWn;

which is guaranteed to be exertable by every viable grasp
(the gray shaded area in Fig. 2-c). A consequence of this
method is that the resulting contact regionsCn are strongly
conditioned on the structure of GWSinit . In a significant
number of cases, the number and distribution of contact
points forming these regions might not be desirable for the
targeted application.

III. T HE EXERTABLE WRENCH SPACE (EWS)

Let us for the moment assume that the ICRs are given
beforehand and letV denote the number of associated viable
grasps. If the setsCn forming the ICRs are disjoint,V is
given by the product of the cardinalities ofCn.

V =
∏

|Cn|, n = 1, . . . , N. (3)

In the case of partially intersecting setsCn, which is admis-
sible in the scope of this paper, the numberV gives an upper
bound. This allows for a formal definition of the exertable
wrench space as the intersection of all grasp wrench spaces
GWSv corresponding to viable grasps.

EWS=
⋂

{GWS1, . . . ,GWSV }. (4)

Analogue to the GWS, which is composed of the wrenches
a single grasp can exert, the EWS represents the space of
wrenches whicheverygrasp in the set of viable grasps at least
can apply to the target object. Figure 3 shows the relation
between the EWS and the contact points in the ICRs. If we
consider to add additional contact points to regionsCn, and
thus to add additional wrenches to their associated setsWn

in (1), possibilities for new grasps emerge and the EWS is
gradually limited since it is described by the intersectionof
all the GWS corresponding to these grasps.

The mirror image of the EWS provides an exact form-
ulation of the disturbance wrenches each of the viable grasps
Gv is guaranteed to withstand. However, from (3) and (4)
it follows that a brute-force approach via computing and
intersecting the convex hulls GWSv of all possible grasps
is prohibitive in the general case, since it requires the
computation and intersection ofV convex hulls.

1A half-space is designated as exterior if it does not containthe origin,
opposed to an interior half-space which contains the origin.
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Fig. 3. Exertable wrench space:(a) The EWS equals the GWSinit if
each regionCn only contains the initial grasping pointspgn

; (b) Adding
new points allows for new grasps to be formed by combinationsof contact
points in the setsCn; (c) The EWS is limited by the intersection of all grasp
wrench spaces GWSv corresponding to viable grasps (in this example not
all of them are depicted for the sake of clarity); The facets of the EWS lie
on hyperplanes which are spanned by wrenches fromK = 2 different sets
Wn each; Those hyperplanes are coplanar to facets of the limiting GWSv ;

IV. EVALUATION OF THE EWS

In this light, the general idea of the approaches discussed
in Section II-D is to approximate the EWS based on parallel
shifting of hyperplanes containing the facets of GWSinit .
Points on the object’s surface are qualified for inclusion in
regionsCn if their associated wrenches lie in appropriate
search spaces constructed in the wrench space. According
to Pollard [8], this yields families of similar viable grasps.
Here, we state an explicit definition of similarity opposed to
the informal one given in [8]:

Definition 1: Two grasps are similar if the face lattices of
their corresponding grasp wrench spaces are isomorphic.

Loosely speaking, the face lattice of a convex polytope
describes its topology. The face lattice is the partially ordered
set of all its faces, the ordering is by set inclusion. Thus,
the above definition implies that the GWS of similar grasps
comprise the same topological structure in a sense that
there exists a homeomorphism between their faces. A more
detailed discussion can be found in [13].

The state-of-the-art principle of approximating the con-
fining hyperplanes of the EWS and forming associated
search spaces provides a computationally efficient way of
generating ICRs. However, it is by no means unique. The
only requirement is that the intersection of interior half-
spaces associated with the hyperplanes forming search spaces
contains the TWS. This requirement is fulfilled by infinitely
many hyperplanes if the constraint of parallelism is relaxed
and inclination of these hyperplanes is allowed. In the
following, we motivate a strategy for a better approximation
of the EWS taking into account the wrench setsWn corres-
ponding to contact points in the specified desired independent
regionsCn. Let us formulate

Proposition 1: The facets of the EWS lie on hyperplanes,
each spanned by wrenches fromK different setsWn.

According to (4), the EWS is formed by the intersection
of all GWSv. Therefore, the facets of the EWS lie on
hyperplanes which also contain facets of certain limiting
GWSv (see Fig. 3-c). Recall, that the facets of convex hulls
are in simplicial form. Thus, the hyperplanes containing
these facets have to be spanned by wrenches stemming from
K different sets by definition, which validates the above
proposition.
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Fig. 4. Confining Hyperplanes of the EWS:Hyperplanes corresponding to
facets of the convex hullsBh confine the EWS; Those hyperplanes linearly
separate the TWS andBh;

It is implied that the convex hull describing the GWSinit
according to (2) is represented by its vertex-facet incidences
which are stored in index setsξh, h = 1, . . . , H . Thus,ξh
describes which vertices of GWSinit span itshth hyperplane.
Consider the initial grasp wrench space depicted in Fig. 3-a.
For this example the setsξh are: ξ1 = {1 2}, ξ2 = {2 3},
ξ3 = {3 4} and ξ4 = {1 4}. We define theH unions of
wrench setsWn in (4) indexed byξh as

Wξh =
⋃

Wn : n ∈ ξh, h = 1, . . . , H. (5)

Let Bh = ConvHull(Wξh) , h = 1, . . . , H describe the
convex hulls over the wrench sets formulated above. The
facets of the EWS lie on hyperplanes which also contain
facets of the convex hullsBh as depicted in Fig. 4. In the
following, the polytope EWSapp, formed by the intersection
of interior half-spaces defined by hyperplanesH̃h, denotes
an approximation of the actual EWS. Eligible hyperplanes
H̃h need to linearly separateBh from the TWS (which has
to be a subset of EWSapp). In order for hyperplanes̃Hh to
approximate the hyperplanes confining the EWS well, we
want to find thoseH̃h which maximize the margins between
the TWS and the convex hullsBh.

A. Approximation of the EWS

An efficient solution of the problem of finding the
maximum-margin separating hyperplane between two con-
vex hulls is provided in the framework ofSupport Vector
Machines(SVM) [14]. Let W ξh ∈ R

M×K be the matrix
corresponding toWξh in (5), whereM =

∑
|Cn| : n ∈ ξh.

W TWS ∈ R
T×K denotes the matrix whose rows contain the

T wrenches defining the TWS. Stated below is the convex
Quadratic Program (QP) used to solve the separation problem

minimize
n′

h
∈RK , b

′

h
∈R

1

2

[
n

′

h

b
′

h

]T [
I 0

0 0

] [
n

′

h

b
′

h

]
(6)

subject to

[
−W ξh −1
W TWS 1

] [
n

′

h

b
′

h

]
≥

[
1

1

]
,

where1 denotes column vectors of ones with appropriate
dimensions. The hyperplanẽHh tangent toBh is defined by
the unit vectornh and the offsetbh given below.

nh =
n

′

h

‖n
′

h‖
, bh =

1 + b
′

h

‖n
′

h‖
. (7)

The only slight deviation from the conventional SVM formu-
lation lies in the offset valuebh in (7) which causes̃Hh being
tangent toBh, whereas the offset in the standard formula-
tion would beb

′

h/‖n
′

h‖. The construction procedure which
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Fig. 5. Identifying restrictive wrenches: (a) Wrench setsWn, TWS
and GWSinit ; (b) H̃3 linearly separates the TWS from the wrenches in
{W3,W4}, (c) Wrenches in{W1,W4} are not linearly separable from
the TWS; The wrench with the largest normal distancedmax from the
corresponding facet of GWSinit is identified; (d) Removing the restricting
contact point, and thus its corresponding wrench, allows for H̃4 to be
computed successfully;

Algorithm 1 : Computation of EWSapp

Input : Prototype graspGinit , Desired regionsCn, TWS
Output : Set of hyperplanes{H̃h} representing EWSapp
Compute GWSinit1
for all H hyperplanes of GWSinit do2

FormW ξh
3

Compute confining hyperplanẽHh according to (6) and (7)4
if the QP in(6) is not feasiblethen5

return false /* TWS andBh not linearly separable*/6
else7

addH̃h to the set{H̃h}8

return {H̃h} /* EWSapp contains the TWS*/9

yields the EWSapp in its H-representation is summarized in
Algorithm 1. Invalid user-specified ICRs are detected when
not all convex hullsBh are linearly separable from the TWS,
which means that some possible grasps would not be viable.
A continuous spherical TWS with a specified radius can be
considered by lettingW TWS in (6) contain the zero-wrench
only. In this case, a subsequent verification if the offsetsbh
of every element in the obtained set{H̃h} are equal or larger
then the given radius is necessary. Figure 10 shows an exam-
ple of the sequential computation of confining hyperplanes
H̃h for regionsCn specified on the discretized ellipse shown
in Fig. 9. In this paper, the Qhull-package [15] was employed
for the computation of the convex hull in the first step of
the above algorithm. It has, for six-dimensional input, a
complexity ofO

(
N3/6

)
with respect to theN contact points

whose associated wrenches form the vertices of GWSinit .
An upper bound for the maximum number of facets of
GWSinit , and thus for the QP’s to be solved in Algorithm 1,
can be given asH ≤ N3/6 [16]. Forming matricesW ξh

from the vertex-facet incidences of GWSinit in step 3 can
be done in linear time. The results presented in Section VI
were generated using an off-the-shelf QP solver [17].

B. Limitations

The above described way of finding the confining hyper-
planes of the EWSapp does not guarantee for Proposition 1
to hold true. It is possible that the number of those wrenches
in W ξh which act as support vectors of̃Hh is smaller
thanK. The computation just tries to maximize the margin
between the TWS and the respective convex hullBh. This
can cause the EWSapp to be unnecessarily limited in some
areas (see Fig. 10-c). Furthermore, if not all viable graspsare
similar according to Definition 1 (which cannot be verified
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Fig. 6. Removing restrictive contact points:ICRs for a 7-fingered grasp;
The regions are evaluated by removing overly restrictive contact points
from the user input according to the strategy presented in Section V-A;
Computation timetQP = 0.067 s;

a priori), the grasp wrench spaces confining the actual EWS
can comprise vertices in different wrench setsWn than
those indexed inξh. Again, this can result in unnecessarily
restrictive hyperplanes̃Hh.

However, the following holds true: by construction, all
wrenches inWξh lie in the exterior half-space of the associ-
ated hyperplanẽHh. This is equivalent to the criterion which
is utilized in currently common approaches as discussed in
Section II-D (points qualify for inclusion in regionCn, if their
corresponding wrenches lie in the intersection of exterior
half-spaces associated with initial contactspgn

). Thus, the
method is conservative in a sense that no false positives
are generated (i. e. no grasps are classified as being able
to preserve a given TWS if they are not).

V. PRIORITIZING POINTS FORINCLUSION IN Cn

In Section IV-A, we introduced a method for
approximating the space of disturbances all viable grasps,
associated with given sets of contact regionsCn, are able
to resist. Algorithm 1 yields an approximation of the EWS
which is not only conditioned on the grasp wrench space
of the initial grasp, as in the state-of-the-art methods, but
on the regionsCn themselves. From a user point of view,
this opens up the possibility of prioritizing certain points
for inclusion in the ICRs. This gives a useful technique for
a number of applications, one of which is the possibility of
predefining regionsCn in form of a desired distribution of
contact points.

A. Predefined contact regions

Often a uniform and ”circular-shaped” distribution of
points within regionsCn is desired, since they can directly
be related to the positioning accuracy of a robotic fixturing
device. Defining such regions can be done by associating the
contact points forming each regionCn with graphs, which
have the corresponding initial grasp contactspgn

as their
respective root nodes. A simple breadth-first-search (BFS)
which is stopped at a predefined depth yields ”layers” of
contact points centered around the prototype grasp contacts.
Figure 1 shows an example of such regions on the model of
a parallelepiped. Algorithm 1 gives an efficient way to verify
if all grasps with one contact point in each region are viable.

However, expecting the user to specify setsCn which
yield a non-empty EWSapp is a stringent requirement. In

Ginit
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Fig. 7. Comparison of algorithms for the generation of ICRs:Regions
Cn for a 7-fingered grasp; ICRQP denotes the regions obtained by the
method detailed in Section V-B, ICRSoA are obtained by the state-of-the-
art approach outlined in Section II-D;

case of Algorithm 1 failing during the computation of
hyperplaneH̃h, one possibility is to remove one (or multiple)
contact point(s) from some region(s) associated withWξh

and retry. We suggest a simple heuristics in order to de-
cide which contact point to remove, which is depicted in
Fig. 5. Removed is the contact point whose associated
wrench lies in the interior half-space of the hyperplane
containing the hth facet of GWSinit and comprises the
largest distance from this hyperplane. Figure 6 shows an
example of regions derived via this method. Another way
of ensuring feasible user input is to treat Algorithm 1
as a post-processing step of the state-of-the-art algorithm
in order to improve the estimation of the EWS.

B. Sequential inclusion of points inCn
Instead of predefining the ICRs, a user can provide a

logic for sequentially including points in regionsCn in
order to ”grow” them from the corresponding initial grasp
points. Consider adding points to regionsCn according to
the same breadth-first strategy as described above. However,
instead of limiting the depth of the search, each time a
point is added EWSapp is updated according to Algorithm 1.
If the point is feasible (i. e., EWSapp contains the TWS),
the neighbors of the point are enqueued in the search.
The procedure stops when no more feasible points are
found. RegionsCn can be prioritized according to their
position in the sequence. In particular, choosing the sequence
n = 1 → 2, 2 → 3, . . . , N -1 → N provides an alternative
way of computing ICRs which, compared to the state-of-
the-art method, yields larger regions for the same TWS as
illustrated in Fig. 7.

If the position of certain initial grasping pointspgn
is

known precisely, e.g. when there are several locator pins
to hold a workpiece [9], it is possible to exclude the
corresponding regionsCn from the sequence. This allows
for more points to be included in the remaining regions. An
example is shown in Fig. 8, where contact points are only
added to two out of seven regionsCn.

VI. N UMERICALLY EVALUATED RESULTS

Algorithm 1 was implemented in Matlab and evaluated on
a PC comprising a Core 2 Duo 2.9-GHz processor and 4GB
RAM. The presented methods work for arbitrary objects,
the model of a parallelepiped sampled with a number of
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Fig. 8. Growing ICRs with some fixed grasp contacts:ICRs for a 7-fingered
grasp with 5 contacts fixed beforehand;

S = 1714 vertices, which are meshed by3424 triangles, was
used for benchmarking. For evaluation purposes hundred
7-fingered prototype form-closure grasps were randomly
created for the test object. Associated to each of these grasps
is a TWS represented by an origin-centered sphere with half
the radius of the largest insphere of the according GWSinit .

First, we evaluate the quality of the approximations
EWSapp provided by Algorithm 1 and the state-of-the-art
(SoA) method. For this purpose the ICRSoA, generated by the
SoA approach on the test grasp set, were treated as an input
for Algorithm 1. The approximations EWSapp generated by
the two methods were compared to the ground-truth EWS
obtained via a brute-force computation according to (4). The
results are summarized in Table I. Algorithm 1 yields vastly
better results than the SoA method in terms of the average
percentage difference in volume∆Vol from the ground truth.
The polytope obtained by the SoA approach is very limited
in some directions due to its strong conditioning on GWSinit .
Note that bhmin

, the radius of the largest origin-centered
insphere of the actual EWS, was correctly identified for all
test cases by the QP method.

In another experiment, ICRs were generated via the QP
approach by sequentially adding points to regionsCn as
presented in Section V-B. The flexible orientation of hyper-
planesH̃h provided by the QP method allows for a more than
three times larger average number of contact points in regions
Cn compared to the SoA approach (see Table II). However,
the average computation timetQP for the QP method is of
two orders of magnitude higher than for the SoA method.

In a final experiment, five grasp contact points were fixed
beforehand and points were sequentially added to the regions
associated with the remaining two contacts as described in
Section V-B. In this limited case, a point added to one region
enables a number of additional grasps which equals only the
cardinality of the other region considered for the inclusion
of points. Thus, in each step of the sequence, the number
of possible viable grasps in (3) is moderate which allows
for a brute-force generation of ICRs in tolerable time. Every
time a contact point is added to a region, the viability of the
enabled new grasps is checked by intersecting the according
grasp wrench spaces. The results of the comparison made
between the brute-force computation and the QP approach
are summarized in Table III. The regions generated by both
methods are the same. However, regarding computational
efficiency, the values for average computation timet and

x

y

Fig. 9. Predefined ICRs on an ellipse:Uniform ICRs for a five-fingered
grasp; Big dots characterize the initial prototype grasping points;

TABLE I

EWS - APPROXIMATION: COMPARISON TO THE STATE-OF-THE-ART

∆Vol [%] σ (∆Vol) [%] ∆bhmin
[%] σ(∆bhmin

) [%]

QP 54.0 21.7 0.0 0.0

SoA 99.8 0.4 43.4 7.5

TABLE II

ICR - GENERATION: COMPARISON TO THE STATE-OF-THE-ART
∑

|Cn| σ (
∑

|Cn|) t [s] σ(t) [s]

QP 186 83 0.827 0.623

SoA 60 39 0.008 0.008

TABLE III

ICR - GENERATION WITH FIXED GRASP CONTACTS
∑

|Cn| σ (
∑

|Cn|) t [s] σ(t) [s]

QP 278 119 1.926 7.310

Brute-force 278 119 331.543 414.789

standard deviationσ(t) are two order of magnitudes higher
for the brute force approach.

The results indicate that the algorithm introduced in this
work is equivalent to a brute-force solution regarding the
number of points qualified for inclusion inCn. Compared
to the state-of-the-art method, it yields larger regionsCn and
provides a better approximation of resistible disturbances for
the price of computational efficiency.

VII. C ONCLUSION

In this work, we introduce the idea of allowing a user
to influence the distribution of contact points within grasp-
ing regions on a target object’s boundary. This allows
incorporation of available knowledge about the targeted
application. We discuss the disturbances which grasps, com-
prising unilateral frictionless contacts within such regions,
can resist. Provided is a framework for the efficient ap-
proximation of these disturbances. Future work is directed
at incorporating frictional contact constraints in order to
increase the applicability of the suggested methods.
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Fig. 10. Generating EWSapp: Successive computation of hyperplanesH̃h according to Algorithm 1 for the ellipse shown in Fig. 9, the considered TWS
is represented by the origin; (a) Initial grasp wrench spaceGWSinit ; (b) A viable grasp whose corresponding GWS comprises a different face lattice
than GWSinit (e.g. the convex hull in (a) comprises a facet spanned by one wrench each from the setsW3, W4 andW5 whereas the GWS in (b) does
not); Thus, the grasps corresponding to the GWS in (a) and (b)are not similar according to Definition 1; (c)-(h) Approximation of the EWS by gradually
limiting GWSinit , the wrenches supporting the hyperplanesH̃h are depicted in bold frames; The hyperplane in (c) does not fulfill Proposition 1, thusH̃1

is unnecessarily constrictive; The gray shaded polytope in(h) represents the final EWSapp; (i) The actual EWS, yielded by a brute-force computation;
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