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Abstract— The concept of independent contact regions on a defined the set of optimal independent regions with the
target object’s surface, in order to compensate for shortcmings  |argest minimal radius, which yield a force-closure grasp i
in the positioning accuracy of robotic grasping devices, isvell each finger is placed anywhere within its respective region.

known. However, the numbers and distributions of contact Th t tended to th tati find dent
points forming such regions is not unique and depends on the € concept was extended to the computation ot indepenaden

underlying computational method. In this work we present a regions for three-finger grasps on planar objects [6] and
computation scheme allowing to prioritize contact points 6r  four-finger grasps of polyhedral objects by Ponce et al. [7].

inclusion in the independent regions. This enables a user to Pollard [8] employs the ICR paradigm in order to synthesize
affect their shape in order to meet the demands of the targete sets of similar whole-hand grasps on 3-D objects. The

application. The introduced method utilizes frictionlesscontact lgorith in I8 b d tri ina in th
constraints and is able to efficiently approximate the spacef algorithms in [8] are based on geometric reasoning in the

disturbances resistible by all grasps comprising contactsithin ~ Wrench space and incorporate a task related grasp quality
the independent regions. measure. Roa and Suarez [9] suggested an approach which

grows independent regions for precision grasps on digebti
objects. In a previous work [10], the authors presented an
Accounting for uncertainties occurring in the positioningefficient algorithm for the computation of such regions.

of ro_botic_grasping devices is a central t_opic in d_e_xterous The approaches in [8][9][10] have in common that they
manipulation research. The quality of a given multifingeregijize 4 prototype form/force-closure grasp and specify

grasp is not only reflected in its capability to withstand exgjstrhances which need to be resisted. Eligible contact
ternal disturbances, but also in its robustness to ShoIt@sN ., qiraints can be formulated via frictionless/frictibia

In thg positioning accuracy. An |m.porta_nt ISSU€ 1IN manug finger point contact models. ICRs are not unique with
facturing and grasping procedures is object immobilizatio oghect to the numbers and distributions of contact points
In this _c_ontext, R_eule_aux [1]_c0|ned the tefmm-closgreas forming the regions. Frequently, contact regions yieldgd b
the ability of a fixturing device to fully prevent motions of o, rent methods are shaped undesirably. This is due to the
the target object via unilateral frictionless contact ¢raiats. fact that the underlying computational principle strongly

In contrast force-closureimparts that the object's motion is ., itions the shape of the resulting contact regions on the
restrained by suitable contact forces considering fi@lo  <\vs of the given prototype grasp.

contact constraints [2]. Contact force vectors and result- . )
ing torque vectors are commonly concatenated to wrench!n this paper, we address the question of how to produce

vectors. Mishra et al. [3] showed that a grasp is force/fornf€9ions which are shaped to befit the considered application

closure, if the convex hull spanned by the contact wrench&Q" €xample regions comprising evenly distributed contact
contains a neighborhood of the origin. points are often attractive, since such uniform regions can

However, for many applications the basic ability to im-pe directly related to .the pogitioning accuracy achi_evable
mobilize an object is just a necessary but not a sufficie®y the deployed grasping device. Contributed is the idea of
requirement. A good grasp should be able to efficientl?”o”t'z'“g contact points for inclusion mth(_e ICRs. V_Ver_ﬂt
withstand disturbance forces/torques which are likely turselves to the form-closure case and utilize the fridtiss
occur during the performed task. If nothing about possiblB0iNt contact model. A computational method, which allows
disturbances is known, a common grasp quality measure {¥ @ USer to specify a suitable strategy for including conta
the radius of the largest origin-centered insphere ofitesp  POINts in the ICRs in order to form desired regions, is
Wrench SpacéGWS), which was proposed by Kirkpatrick sgggested. This novel approach allows to evaluate t_helactu_a
et al. [4]. The GWS is defined as the set of all wrenches thgiSturbances every member of the grasp set associated with
a manipulator can exert on the object for a given grasp. [{#€ ICRs is able to resist. To this end, we introduce the
this definition it is presumed that the sum of the magnitudE*ertable Wrench SpadgWs) as a generalization of the
of the grasping forces is bounded. GWS applied to sets of grasps.

From the viewpoint of a grasping device, not only the The assumptions and required background are provided
ability to resist disturbances, but also the robustness a@f Section II. In sections Il and IV we motivate and
a grasp to modeling and positioning inaccuracies is atetail our computation scheme. Section V discusses pessibl
important factor. In this context, the notion bfdependent prioritization strategies and finally in Section VI we proei
Contact RegiongIlCRs) was introduced by Nguyen [5]. He a numerical evaluation of the suggested approach.

I. INTRODUCTION



Il. BACKGROUND

A. Nomenclature

Set of position vectors representing the target object,
index used for the points representing the object,
number of contact points in a grasp / number of ICRs,
index used for theV grasp contact points,

set of contact points forming theth ICR,
set containing the inde_xesof t_he points in regi(_)"ﬂn ' Fig. 1. Predefined Contact Regions on a parallelepip&thiform regions
set of wrenches associated with the contact poing,in ¢, for an8-fingered grasp; Contact points in the Regighsare specified
number of hyperplanes confining a convex hull, via a BFS, stopping at a depth of one (see Section V-A); Fdmsece of
. all viable grasps was verified utilizing Algorithm 1;

index used for hyperplanes,

dimension of the wrench space. C. Contact Model

S
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We consider frictionless point contacts between the target
object and the fingers of the gripper. The forfe applied
at pointp, acts along the normak, and creates a torque

The target object's surface is described as a polygonak = Ps X f - Force and torque vectors can be concatenated
mesh (or a polygonal chain in the case of planar objecty & wrench vectow, = (f, 75/A). Dividing the torque
whose vertices are represented by the&et {p,,...ps}. Parts by the largest possible torque amm= max(||p||)

The position vectorp, € S are expressed in a coordinategrants scale invariance [12]. L&, be the set containing
frame which is located in the center of mass of the objecfndexes of the contact points forming tdh independent
Each pointp, has an associated inward-pointing unit normafegion. Thereby, the region formed by these contact points

ns and neighboring points, defined as the ones connecteddgn be formalized a8, = {p,: ¢ € C,}. The corresponding
p, by an edge of the mesh. Thus, this representation can {@ench set is defined as

seen as a graph where nodes represent mesh vepticasd .
edges define the neighboring relation between these vertice Wa ={w(p.): ¢ € Cn}. (1)

A graspG = {p,, , o Pgyt Py, © S}is rg_presented as a Gjven a graspg, the discrete grasp wrench space in the
set of N contact points. ICRs are specified 85 setsC.  frictionless case is described by the convex hull overihe

which contain points on the target object's surface. Eacfjrenches generated at the grasping points
finger of a grasping device is associated with one such o

region. Form-closure grasps, which comprise one contact =~ GWS= ConvHull({w(p,,),...,w(p,,)}). (2)
drawn from each regiod, and are suitable to resist expected\;yte that we assume convex hulls to be in simplicial form.
disturbances (see Section II-D), are denotedialsle grasps. Equation (2) characterizes the space of wrenches, which
It is assumed that the target object is sufficiently diszeeti .., be exerted to the grasped object when the sum of the

to capture local curvature.,_e., grasps With contgcts on _meShmagnitudes of all finger forces is bounded. All wrenches lie
facets spanned by the discrete points forming regiéns ., the Limit Wrench SpacdLWS) [12], which is limited

are also viable grasps. We presume that user-input in forgyy by the magnitude of the contact forces (unit magnitude
of an initial viable grasplinit is available. The necessary i, the present case) and the resulting torques.
prototype grasp can be acquired by one of the many algo-

rithms proposed for grasp synthesis (e.g. [9][11]) or by aP. State of the art
expert demonstrator. Furthermore, quasi-static contitare Recent approaches for generating ICRs [8][9][10] allow
assumed and the kinematic constraints of the device gmspifor user-input in form of a set comprising expected distur-
the target object are not considered. bance wrenches. The convex hull over the mirror image of
The aim of this work is to allow a user to influence thethis set is commonly labeled dask Wrench Spadg@Ws). It
distribution of contact points within the regiorts,, i.e., represents the set of wrenches which every viable grasp has
to affect their shape on the target object's boundary. Ito be able to exert on the object in order to counterbalance
addition to the necessary initial grasp,it and expected the expected disturbances and is frequently represented as
disturbances, we consider two possible user inputs. kest, an origin-centered sphere. Figure 2 illustrates the basic
want to investigate what is the set of disturbances thatyeveprinciple of the current methods. Shown is the computation
viable grasp is guaranteed to resist, if desired regi®ns procedure in a hypothetical 2-D wrench space for a four-
themselves are defined by a user beforehand. An examplefofgered frictionless grasp. The ICRs obtained depend on
predefined ICRs for an eight-fingered grasp on the model tfie geometric properties of the grasp wrench space WS
a parallelepiped is shown in Fig. 1. Second, we are intadlesteorresponding to a provided initial prototype force-clasu
in prioritizing contact points for inclusion in region§, graspGinit, and the disturbances considered via the TWS. By
according to a user-provided logic. construction, the TWS is a subset of the space of wrenches

B. Assumptions & Problem Description
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Fig. 2. Forming search regions via parallel shiftingla) Wrenches Fig. 3. Exertable wrench spacea) The EWS equals the GV if
associated with the initial grasgj,i;; (b) The corresponding GWg; each regiorC,, only contains the initial grasping poings, ; (b) Adding
and its confining hyperplanes; (c) The TWS represents thefsetenches new points allows for new grasps to be formed by com%inatmfrmntact
necessary to counterbalance expected disturbances; pligpes associated points in the set§,,; (c) The EWS is limited by the intersection of all grasp
with facets of GW&,;; are translated in parallel until they are tangent towrench spaces GWScorresponding to viable grasps (in this example not
the TWS; Search spaces (the yellow shaded areas) in the hwspare  all of them are depicted for the sake of clarity); The facdtthe EWS lie
are formed by the intersection of exterior half-spaceerresponding to on hyperplanes which are spanned by wrenches ffom: 2 different sets
the shifted hyperplanes; A poigi, on the object’'s boundary qualifies for W, each; Those hyperplanes are coplanar to facets of thedgn@ws;
inclusion in regionC,, if its associated wrench lies in the search space

associated withp,, ; RegionsC,, on the object's surface are formed by the IV. EVALUATION OF THE EWS

. qn . .
contact points with associated wrenches in the ¥& . . .
P s In this light, the general idea of the approaches discussed

which is guaranteed to be exertable by every viable grasp Section II-D is to approximate the EWS based on parallel
(the gray shaded area in Fig. 2-c). A consequence of thihifting of hyperplanes containing the facets of GMYS
method is that the resulting contact regiahsare strongly Points on the object’s surface are qualified for inclusion in
conditioned on the structure of GWg. In a significant regionsC, if their associated wrenches lie in appropriate
number of cases, the number and distribution of contagkarch spaces constructed in the wrench space. According
points forming these regions might not be desirable for thg Pollard [8], this yields families of similar viable grasp
targeted application. Here, we state an explicit definition of similarity opposed t

I1l. THE EXERTABLE WRENCH SPACE (EWS) the informal one given in [8]:

Let us for the moment assume that the ICRs are givéaefinition 1: Two grasps are similar if the face lattices of
beforehand and let” denote the number of associated viabldn€ir corresponding grasp wrench spaces are isomorphic.

grasps. If the setg§,, forming the ICRs are disjoint} is Loosely speaking, the face lattice of a convex polytope
given by the product of the cardinalities 6f. describes its topology. The face lattice is the partiallyesed

set of all its faces, the ordering is by set inclusion. Thus,

V= H Cal, m=1,..., N. 3) the above definition implies that the GWS of similar grasps

In the case of partially intersecting sets, which is admis- comprise the same topological structure in a sense that
sible in the scope of this paper, the numbegives an upper there exists a homeomorphism between their faces. A more
bound. This allows for a formal definition of the exertabledetailed discussion can be found in [13].

wrench space as the intersection of all grasp wrench spaced he state-of-the-art principle of approximating the con-

GWS, corresponding to viable grasps. fining hyperplanes of the EWS and forming associated
search spaces provides a computationally efficient way of
EWS= ﬂ{GWSh---vGWSH- (4) generating ICRs. However, it is by no means unique. The

Analogue to the GWS, which is composed of the wrenchednly requirement is that the intersection of interior half-
a single grasp can exert, the EWS represents the space #aces associated with the hyperplanes forming searcespac
wrenches whickeverygrasp in the set of viable grasps at leasg€ontains the TWS. This requirement is fulfilled by infinitely
can apply to the target object. Figure 3 shows the relatiomany hyperplanes if the constraint of parallelism is retaxe
between the EWS and the contact points in the ICRs. If wend inclination of these hyperplanes is allowed. In the
consider to add additional contact points to regipsand following, we motivate a strategy for a better approximatio
thus to add additional wrenches to their associated)dgts ©of the EWS taking into account the wrench si¥s corres-
in (1), possibilities for new grasps emerge and the EWS @onding to contact points in the specified desired independe
gradually limited since it is described by the intersectign regionsC,. Let us formulate
all the GWS corresponding to these grasps. Proposition 1: The facets of the EWS lie on hyperplanes,
The mirror image of the EWS provides an exact formeach spanned by wrenches fraih different sets\v,,.
ulatllon of the dlsturbange wrenches each of the viable grasp According to (4), the EWS is formed by the intersection
gv is guaranteed to withstand. Howeverz from (3) .and W all GWS,. Therefore, the facets of the EWS lie on
it follows that a brute-force approach via computing angyyperplanes which also contain facets of certain limiting
intersecting the convex hulls GWSf all possible grasps Gyys, (see Fig. 3-c). Recall, that the facets of convex hulls
is prohibitive in the general case, since it requires thgwe in simplicial form. Thus, the hyperplanes containing
computation and intersection &f convex hulls. these facets have to be spanned by wrenches stemming from
1A half-space is designated as exterior if it does not contiaénorigin, K diﬁe.r.em sets by definition, which validates the above
opposed to an interior half-space which contains the arigin proposition.
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Fig. 4. Confining Hyperplanes of the EWByperplanes corresponding to Fig. 5.  Identifying restrictive wrenches(a) Wrench setsW,,, TWS
facets of the convex hulls;, confine the EWS; Those hyperplanes linearly and GW§,jt: (b) Hs linearly separates the TWS from the wrenches in
separate the TWS anfiy,; {Ws,Ws}, (c) Wrenches in{WWi, W4} are not linearly separable from
the TWS; The wrench with the largest normal distantg,. from the
It is implied that the convex hull describing the GW{S corresponding facet of GWg; is identified; (d) Removing the restricting

according to (2) is represented by its vertex-facet inaigsn contact point, and thus its corresponding wrench, allows 76, to be
which are stored in index sets, h = 1,.... H. Thus,¢, computed successiuly;

describes which vertices of GV span itshth hyperplane.  Algorithm 1: Computation of EWspp

Consider the initial grasp wrench space depicted in Fig. 3-a jnput: Prototype graswint, Desired regiong,,, TWS

For this example the sets, are: & = {1 2}, & = {2 3}, Output: Set of hyperplane§#,, } representing EW&pp

& = {3 4} and & = {1 4}. We define theH unions of 1 Compute GWgt

wrench setsV, in (4) indexed by¢, as 2 for agoﬁqwerp'anes of GWjr do
193

3
Wgh, _ U Wyine&, h=1,... H. (5) g Compute confining hyperplarfﬁh according to (6) and (7)
6

if the QP in(6) is not feasiblethen

. return false /* TWS andB;, not linearly separablex/
Let B, = ConvHull(W,), h = 1,...,H describe the L : " y separabler

convex hulls over the wrench sets formulated above. Thg
facets of the EWS lie on hyperplanes which also contain
facets of the convex hullss;, as depicted in Fig. 4. In the 9 retum {#,} / * EWSpp contains the TWSt/
following, the polytope EWgyp, formed by the intersection - - ] )
of interior half-spaces defined by hyperplaﬂég, denotes y|eld§ the EWSpp_m its H—reprg_sentatlon is summarized in

an approximation of the actual EWS. Eligible hyperplaneé‘lgor'thm 1. Invalid user-s_pecmed ICRs are detected when
7, need to linearly separat8;, from the TWS (which has not_ all convex hulls3;, are Ilnegrly separable from the TWS,

to be a subset of EW,). In order for hyperplaneﬁh to Which means that some possible grasps would not be viable.

approximate the hyperplanes confining the EWS well, wh co_ntinuous sphgrical TW_S with a spgcified radius can be
want to find those#,, which maximize the margins between considered by letting¥ s in (6) contain the zero-wrench

else B _
| add#, to the set{#,}

the TWS and the convex huls,, only. In this case, a subsequent verification if the offégts
' of every element in the obtained g6, } are equal or larger
A. Approximation of the EWS then the given radius is necessary. Figure 10 shows an exam-

An efficient solution of the problem of finding the ple of the sequential computation of confining hyperplanes
maximum-margin separating hyperplane between two cofttr for regionsC,, specified on the discretized ellipse shown
vex hulls is provided in the framework dupport Vector in Fig. 9. In this paper, the Qhull-package [15] was employed
Machines(SVM) [14]. Let W, € RM*X pe the matrix for the computation of the convex hull in the first step of
corresponding toV, in (5), where M = 3" |Cp|: n € &,. the above algorithm. It has, for six-dimensional input, a
Wrws € RT*E denotes the matrix whose rows contain th&omplexity ofO (N3 /6) with respect to theV contact points
T wrenches defining the TWS. Stated below is the convexhose associated wrenches form the vertices of yWS

Quadratic Program (QP) used to solve the separation problédi upper bound for the maximum number of facets of
GWSit, and thus for the QP’s to be solved in Algorithm 1,

’ T ’
minimize E { " ] [ I 0 ] [ ny, } (6) can be given adi < ]y3/_6 [16]. Forming r_natricesWEh
n,erx v ecr 2 | by 0 0 by, from the vertex-facet incidences of G\ in step 3 can
—W, 1 "h 1 be done in linear time. The results presented in Section VI
subject to h f . L
ubj [ Wiws 1 } { b, ] 2 [ 1 ] ) were generated using an off-the-shelf QP solver [17].

wherel denotes column vectors of ones with appropriat- Limitations
dimensions. The hyperplarié;, tangent toB, is defined by The above described way of finding the confining hyper-
the unit vectorn;, and the offseb;, given below. planes of the EWg,, does not guarantee for Proposition 1
to hold true. Itis possible that the number of those wrenches
. (7) in W¢, which act as support vectors ¢, is smaller
[ than K. The computation just tries to maximize the margin
The only slight deviation from the conventional SVM formu-between the TWS and the respective convex 4l This
lation lies in the offset valug, in (7) which cause${;, being can cause the EWgy to be unnecessarily limited in some
tangent toB3;,, whereas the offset in the standard formulaareas (see Fig. 10-c). Furthermore, if not all viable grasps
tion would beb, /||n,||. The construction procedure which similar according to Definition 1 (which cannot be verified

’ ’
n 1+
np = —to, by = —="
(723,



Fig. 6. Removing restrictive contact pointsCRs for a 7-fingered grasp; Fig. 7. Comparison of algorithms for the generation of ICARegions

The regions are evaluated_by removing overly restrictive_ta;z:t points  C, for a 7-fingered grasp; | p denotes the regions obtained by the
from the user input according to the strategy presented &tideV-A;  method detailed in Section V-B, IGR A are obtained by the state-of-the-
Computation timetgp = 0.067 s; art approach outlined in Section II-D;

a priori), the grasp wrench spaces confining the actual EWgase of Algorithm 1 failing during the computation of
can comprise vertices in different wrench sets, than hyperplané,, one possibility is to remove one (or multiple)
those indexed irf,. Again, this can result in unnecessarilycontact point(s) from some region(s) associated With,
restrictive hyperpmegh_ and retry. We suggest a simple heuristics in order to de-

However, the following holds true: by construction, allcide which contact point to remove, which is depicted in
wrenches inV, lie in the exterior half-space of the associ-Fig- 5. Removed is the contact point whose associated
ated hyperplané{,,. This is equivalent to the criterion which Wrench lies in the interior half-space of the hyperplane
is utilized in currently common approaches as discussed #®ntaining the M facet of GWSy and comprises the
Section II-D (points qualify for inclusion in regiaf,, if their ~ 1argest distance from this hyperplane. Figure 6 shows an
corresponding wrenches lie in the intersection of exteriggxample of regions derived via this method. Another way
half-spaces associated with initial contagis ). Thus, the ©f ensuring feasible user input is to treat Algorithm 1
method is conservative in a sense that no false positives @ post-processing step of the state-of-the-art algorith
are generatedi(e. no grasps are classified as being ablén order to improve the estimation of the EWS.

to preserve a given TWS if they are not). B. Sequential inclusion of points @,

V. PRIORITIZING POINTS FORINCLUSION IN Cy, Instead of predefining the ICRs, a user can provide a
In Section IV-A, we introduced a method forlogic for sequentially including points in regiong, in
approximating the space of disturbances all viable graspsider to "grow” them from the corresponding initial grasp
associated with given sets of contact regighs are able points. Consider adding points to regiofis according to
to resist. Algorithm 1 yields an approximation of the EWSthe same breadth-first strategy as described above. However
which is not only conditioned on the grasp wrench spac@stead of limiting the depth of the search, each time a
of the initial grasp, as in the state-of-the-art methodg, byoint is added EWgypis updated according to Algorithm 1.
on the regiong’,, themselves. From a user point of view,If the point is feasible i e., EWSspp contains the TWS),
this opens up the possibility of prioritizing certain paint the neighbors of the point are enqueued in the search.
for inclusion in the ICRs. This gives a useful technique foThe procedure stops when no more feasible points are
a number of applications, one of which is the possibility ofound. RegionsC,, can be prioritized according to their
predefining regiong,, in form of a desired distribution of position in the sequence. In particular, choosing the secpie
contact points. n=1—-22-—3,...,N-1 - N provides an alternative
. . way of computing ICRs which, compared to the state-of-
A. Predefined contact regions the-art method, yields larger regions for the same TWS as
Often a uniform and “circular-shaped” distribution ofj|ustrated in Fig. 7.

points within region<,, is desired, since they can directly |f the position of certain initial grasping points,, is
be related to the positioning accuracy of a robotic fixturinggnown precisely, e.g. when there are several locator pins
device. Defining such regions can be done by associating the hold a workpiece [9], it is possible to exclude the
contact points forming each regiaf), with graphs, which corresponding regions,, from the sequence. This allows
have the corresponding initial grasp contapts as their for more points to be included in the remaining regions. An
respective root nodes. A simple breadth-first-search (BF@kample is shown in Fig. 8, where contact points are only

which is stopped at a predefined depth yields "layers” oidded to two out of seven regiods.
contact points centered around the prototype grasp centact

Figure 1 shows an example of such regions on the model of VI. NUMERICALLY EVALUATED RESULTS

a parallelepiped. Algorithm 1 gives an efficient way to werif ~ Algorithm 1 was implemented in Matlab and evaluated on

if all grasps with one contact point in each region are viablea PC comprising a Core 2 Duo 2.9-GHz processor and 4GB
However, expecting the user to specify s€ts which RAM. The presented methods work for arbitrary objects,

yield a non-empty EWgy is a stringent requirement. In the model of a parallelepiped sampled with a number of
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Fig. 8. Growing ICRs with some fixed grasp contad@Rs for a 7-fingered

grasp with 5 contacts fixed beforehand; Fig. 9. Predefined ICRs on an ellipséiniform ICRs for a five-fingered
S = 1714 vertices, which are meshed By24 triangles, was 9drasp; Big dots characterize the initial prototype gragmoints;

used for benchmarking. For evaluation purposes hundred TABLE |

7_fingered prototype form-closure grasps were random'y EWS -APPROXIMATION: COMPARISON TO THE STATEOF-THE-ART

created for the test object. Associated to each of thes@gras AVOl (%] | o (AVOl) [%] | Aby,,,,,, (%] | o(Aby,,,,.) [%]
is a TWS represented by an origin-centered sphere with halbp| 54,0 21.7 0.0 0.0
the radius of the largest insphere of the according GWS " Al o908 04 13.4 75

First, we evaluate the quality of the approximations
EWSspp provided by Algorithm 1 and the state-of-the-art TABLE Il
(SoA) method. For this purpose the |§&’ generated by the ICR - GENERATION: COMPARISON TO THE STATEOF-THE-ART
SoA approach on the test grasp set, were treated as an input S Cnl o (X |Cnl) t [s] o(t) [s]
for Algorithm 1. The approximations EWg, generated by oP 186 83 0.827 0.623
the t_wo m_ethods were compared t_o the grou_nd-truth EWS 5oA 60 39 0,008 0,008
obtained via a brute-force computation according to (4 Th
results are summarized in Table I. Algorithm 1 yields vastly TABLE Il
better results than the SoA method in terms of the average ICR - GENERATION WITH FIXED GRASP CONTACTS
percentage difference in volundgVol from the ground truth. STenl | e (2 lenl) t[s] o(t) [s]
The polyt(_)pe pbtamed by_ the SoA apprp_ach is very limited op 278 119 1926 7310
in some directions due to its strong conditioning on G\YS Bruteforce P 119 331543 | a14.789
Note thatb,,

the radius of the largest origin-centered

insphere of the actual EWS, was correctly identified for all
test cases by the QP method.
In another experiment, ICRs were generated via the Q
approach by sequentially adding points to regi@ghs as
presented in Section V-B. The flexible orientation of hype
planesH,, provided by the QP method allows for a more tha

r_

three times larger average number of contact points in nsgi
C, compared to the SoA approach (see Table Il). Howev
the average computation tinigp for the QP method is of
two orders of magnitude higher than for the SoA method.

(0]

VIl. CONCLUSION

In a final experiment, five grasp contact points were fixed |n this work, we introduce the idea of allowing a user
beforehand and points were sequentially added to the regiog influence the distribution of contact points within grasp

standard deviation (¢) are two order of magnitudes higher
flgr the brute force approach.
The results indicate that the algorithm introduced in this
work is equivalent to a brute-force solution regarding the
number of points qualified for inclusion i@,. Compared
Mo the state-of-the-art method, it yields larger regi6psand
ey:rJrovides a better approximation of resistible disturbarfoe
the price of computational efficiency.

associated with the remaining two contacts as described iiﬁg regions on a target objects boundary. This allows
Section V-B. In this limited case, a point added to one regiopcorporation of available knowledge about the targeted
enables a number of additional grasps which equals only tgplication. We discuss the disturbances which grasps; com
cardinality of the other region considered for the inclasio prising unilateral frictionless contacts within such g,

of points. Thus, in each step of the sequence, the numhgin resist. Provided is a framework for the efficient ap-
of possible viable grasps in (3) is moderate which allowgroximation of these disturbances. Future work is directed
for a brute-force generation of ICRs in tolerable time. Bverat incorporating frictional contact constraints in order t

time a contact pOint is added to a region, the Vlablllty of th%crease the app||cab|||ty of the Suggested methods.
enabled new grasps is checked by intersecting the according

grasp wrench spaces. The results of the comparison made
between the brute-force computation and the QP approachThis research has been partially supported by the
are summarized in Table Ill. The regions generated by botHANDLE project, funded by the European Community’s
methods are the same. However, regarding computatiortsééventh Framework Programme (FP7/2007-2013) under
efficiency, the values for average computation timand grant agreement ICT 231640.
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Fig. 10. Generating EWgpp: Successive computation of hyperplarfég according to Algorithm 1 for the ellipse shown in Fig. 9, thensidered TWS
is represented by the origin; (a) Initial grasp wrench spa®S,;;; (b) A viable grasp whose corresponding GWS comprises @rdiitt face lattice
than GW$§it (e.g. the convex hull in (a) comprises a facet spanned by aeech each from the seld’s, W, and W5 whereas the GWS in (b) does
not); Thus, the grasps corresponding to the GWS in (a) andréoyot similar according to Definition 1; (c)-(h) Approxitiven of the EWS by gradually
limiting GWS;,jt, the wrenches supporting the hyperplaf¢gs are depicted in bold frames; The hyperplane in (c) does ritil roposition 1, thusH;

is unnecessarily constrictive; The gray shaded polytopg)mepresents the final EVEBp, (i) The actual EWS, yielded by a brute-force computation;
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