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<name>.<surname>@oru.se

Abstract— The combination of task and motion planning
presents us with a new problem that we call geometric back-
tracking. This problem arises from the fact that a single
symbolic state or action may be geometrically instantiated
in infinitely many ways. When a symbolic action cannot be
geometrically validated, we may need to backtrack in the
space of geometric configurations, which greatly increases the
complexity of the whole planning process. In this paper, we
address this problem using intervals to represent geometric
configurations, and constraint propagation techniques to shrink
these intervals according to the geometric constraints of the
problem. After propagation, either (i) the intervals are shrunk,
thus reducing the search space in which geometric backtracking
may occur, or (ii) the constraints are inconsistent, indicating the
non-feasibility of the sequence of actions without further effort.
We illustrate our approach on scenarios in which a two-arm
robot manipulates a set of objects, and report experiments that
show how the search space is reduced.

I. INTRODUCTION AND MOTIVATION

Both task and motion planning have been studied for
decades [1], [2], and efficient algorithms have been devel-
oped. However, combining them together is a challenge be-
cause motion planning, which is computationally expensive,
has to be interleaved with task planning (which is itself a
hard problem). We illustrate our approach on manipulation
tasks by the DLR1 humanoid robot, Justin [3] (Fig. 1). The
tasks considered are simple, for instance sorting objects or
stacking cups2. In this kind of problem, task planning is not
complicated because there are few causal relations between
actions. Motion planning is not difficult either, because the
workspace of the robot is not very cluttered, and we use
predefined grasps. Hence, we avoid doing grasp planning.
Despite these favourable conditions, some problems turn out
to be intractable because of geometric backtracking.

During task planning, geometric configurations, which are
associated to symbolic states, are maintained. When the pre-
conditions of a symbolic action are validated, the geometric
configurations associated to the current state are used in order
to assess the geometric applicability of the action. Next,
we describe in detail the geometric backtracking problem
through an example, and show how it impairs the planning
process. We consider a stacking task (Fig. 1). The task
consists in stacking four cups at a given location (the square

1Deutsche Zentrum für Luft-und Raumfahrt
2See videos with the real robot at http://www.aass.oru.se/∼fll/videos/

Fig. 1. Simulation of the two-arm system Justin (courtesy DLR): stacking
the last cup is not possible due to kinematic constraints.

area on the table). Symbolically, the domain is simple: four
objects, one location, and four possible actions (grasp and
place, with left or right arm). Looking at Fig. 1, one can
see that the right arm of the robot has almost reached
full extension. Stacking the first three cups is possible, but
placing the last cup on top of the pile is not possible because
the kinematic constraints of the robot do not allow it.

The last action is not feasible because the cup at the
bottom of the pile was placed at a wrong position. If the
first cup had been placed closer to the robot, the task could
have been completed. Hence, the symbolic plan is actually
feasible, but the geometric instance chosen for the first action
does not allow the planner to complete the sequence. If
the planner aborted the search at this point, it would be
incomplete, because a solution exists but is not reached. In
order to remain complete (up to some spatial resolution),
the planner must try alternative geometric instances until a
solution is found, or reject this last action after exhaustive
search. We call this process geometric backtracking.

Geometric backtracking is problematic for two reasons.
First, the number of geometric configurations is infinite, and
remains very large even with a gross discretization. Fig. 2
describes a scheme for discretizing the space of geometric
configurations:
• the grasp action can be done using one of the 16

precomputed grasp positions for each type of grasp;
• the stack action can be performed in 16 different ways

(16 possible orientations for the cup) ;
• place action can be achieved in 256 ways (16 locations
×16 orientations).

Hence, for the “4 cups stacking” example, exhaustive
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Fig. 2. An example of discretization of the space of geometric configura-
tions.

search is infeasible (6.9 × 1010 possilities). But even on a
short sequence composed of two actions, such as pick and
place, the problem arises. If a specific final orientation for the
object is required, then the success of the place action highly
depends on the grasp chosen for the pick action. Without a
proper strategy, the planner may have to try several grasps
before finding one which allows it to place the cup with the
desired orientation. And for each candidate grasp tried, we
need to try all the 256 possible place actions to be sure that
the sequence cannot be executed with this grasp.

This leads us to the second reason why geometric back-
tracking is problematic. Checking for feasibility requires
calling the motion planner to ensure that the path is collision-
free, which takes time (on average 100 ms for our platform
and scenario). Even tough the feasibility test is sometimes
much faster (when no inverse kinematic (IK) solution exists),
a simple Pick and Place sequence of actions may still
require a dozen seconds to be solved, and more time to be
proved infeasible. This is not acceptable at the task planning
level, when plenty of these sequences of actions need to be
assessed.

In our view, geometric backtracking is one of the main
difficulties in combining task and motion planning. In this
paper, we propose an approach to tackle this problem, by
introducing an intermediate layer between task planning
and motion planning: symbolic actions are not directly
instantiated into geometric configurations. Instead, a set of
constraints is extracted from the symbolic actions and from
the geometric model of the robot. These constraints are used
to prune out geometric configurations that can never be a
part of a solution. In this way, geometric backtracking is
not avoided, but significantly reduced. Moreover, when the
set of constraints is inconsistent, we know that the sequence
of actions is infeasible without backtracking at all.

II. RELATED WORK

To our knowledge, aSyMov [4] was the first planner to
combine task and motion planning. Motion planning is done
by composition of probabilistic roadmaps (PRMs) [5], while
task planning is based on an A*-like search algorithm. It
uses a hybrid state representation: a classical symbolic state,
together with its geometric counterpart. During search, the
algorithm alternates between finding a plan using the current

roadmaps, or adding nodes to the roadmaps in order to refine
its geometric knowledge of the world. Each state has a list
of candidate geometric configurations, some of which are
validated when they are known to be reachable from the
previous state. The validation procedure tries to back-trace
through valid configurations until the initial configuration is
reached. If this is not possible, the algorithm may have (in
the worst case) to check for all collision-free paths between
all the candidate configurations of each successive state. The
search then becomes exponential in the number of robots
and objects. aSyMov performs well when the problem is
constrained at the task level, but is less efficient on pure
geometric problems (cf. the forklifts and boxes experiments
in [4]).

In [6], an extension of the planning domain description
language (PDDL) is proposed. The operators are augmented
with a condition-checker and an effect-applicator, which
causes calls to external specialized geometric reasoners
during task planning. The grasps are predefined. They use
numerical fluents to represent transformation matrices, robot
configurations, and poses of objects. It is not clear though
how predicates defining continuous placements on surfaces
are dealt with, e.g., On cup table, but it seems likely that
predefined locations are used. Backtracking occurs at the
task level within a set of predefined discrete locations, and
the question of geometric backtracking does not arise.

In [7], a hierarchical task network (HTN) approach is
proposed in which the complexity of hybrid planning is
indirectly tackled by decreasing the search horizon. The
subtasks obtained from the task decomposition are executed
as soon as primitive actions are reached. This allows to re-
plan “in the now”: a useful feature in dynamic or uncer-
tain environments. On the other hand, this prevents from
projecting the geometric consequences of actions far into
the future, which implies that geometrically hard problems
would require physical backtracking.

Combination of task and motion planning is addressed in
other works, e.g., [8], [9], [10], [11], [12], but geometric
backtracking is not explicitly identified and addressed. In
[12], a sampling technique is proposed in order to detect
infeasible motions earlier in PRM motion planning, which
relates to geometric backtracking. This cannot be applied
to our domain though, because we consider both arms
as separate robots. Hence, the configuration of obstacles
(mainly the other arm) is changing at each motion planning
query, which is inappropriate for PRM techniques.

III. GENERATING THE CONSTRAINTS

Our approach consists of introducing an intermediate step
between task planning and motion planning, in which a set of
constraints is generated. These constraints are automatically
generated from the sequence of symbolic actions currently
explored by the task planner, and from the geometric
properties of the robot. These constraints express what can
or cannot be geometrically achieved. Intuitively, such a
set of constraint can capture that “if object o2 is picked
from its current position with the right arm and placed



Fig. 3. Representation of symbolic states and stages of operation. A
symbolic state can be instantiated into many geometric configurations.

on top of object o3, the maximum achievable clockwise
rotation is 65 degrees”. Such constraints can drastically
reduce search in the space of geometric configurations,
because they eliminate many configurations resulting from
the discretization process that cannot be part of a feasible
sequence. For clarity in this paper, we do not describe the
whole planning algorithm, but only how a single sequence
of actions is handled. The rest of the section introduces
some notation to represent actions and states, and how
constraints are generated.

A. Representing actions and states

For conciseness of notation, in some cases, we will use
x = (x1, . . . , xn) to denote the elements of a column vector
x. All coordinates are expressed in the world frame.

We consider m rigid objects. The ith object is denoted
by oi, i ∈ {1, . . . ,m}, and its pose is represented using
(pi, γi)k, where pi = (xi, yi, zi) ∈ R3 represents its
position, and γi ∈ R the angle rotation about a unit axis
k ∈ R3. It is assumed here that all objects have the same
axis of rotation k, so k will be omitted in the notation.

We consider a sequence of n symbolic actions (e.g., place
oi table), in which the jth action is denoted by Aj , j ∈
{1, . . . , n} (see Fig. 3). The position of oi at symbolic state
sj (i.e., after action Aj has been completed) will be denoted
by p

(j)
i , and its orientation, by γ(j)i :(

p
(j−1)
i , γ

(j−1)
i

)
Aj−−→

(
p
(j)
i , γ

(j)
i

)
.

Hence, a sequence of n actions 〈A1, . . . , An〉 results in a
sequence of poses for all m objects

〈A1, . . . , An〉 →


〈p(0)

1 , γ
(0)
1 , . . . ,p

(n)
1 , γ

(n)
1 〉

...
〈p(0)
m , γ

(0)
m , . . . ,p

(n)
m , γ

(n)
m 〉

 .

Note that (p(j−1)
i , γ

(j−1)
i ) = (p

(j)
i , γ

(j)
i ) when object oi is

not manipulated.
Symbolic actions on objects are meant to be applied

using the robotic system Justin [3]. At the jth symbolic
state, the pose of the tool center point (TCP) of the right
manipulator of Justin will be denoted by (r(j), r

(j)
γ )k, where

r(j) = (r
(j)
x , r

(j)
y , r

(j)
z ),∈ R3 denotes Cartesian position,

and r
(j)
γ ∈ R is an angle about the axis of rotation k. We

assume that, at each symbolic state, the axis of rotation
of the end-effector is parallel to the axis of rotation of the
object to be grasped or placed3. In a similar way, we define
the pose of the TCP of the left manipulator as (`(j), `

(j)
γ )k.

For example, consider the following sequence of grasp
(G) and place (P) actions:

states s1 s2 s3 s4 s5 s6
actions A1 A2 A3 A4 A5 A6

object o1 G
(1)
1 P

(2)
1 · · · ·

object o2 · · G
(3)
2 · P

(5)
2 ·

object o3 · · · G
(4)
3 · P

(6)
3

right hand X X X · X ·
left hand · · · X · X

As a result of the first symbolic action A1 = G
(1)
1 , o1

is grasped by the right hand, resulting in the first symbolic
state. Note that (p

(1)
1 , γ

(1)
1 ) = (p

(0)
1 , γ

(0)
1 ) as the object is

not yet moved. The second action A2 = P
(2)
1 places o1 at

(p
(2)
1 , γ

(2)
1 ) 6= (p

(1)
1 , γ

(1)
1 ) since the object has been moved.

During the remaining stages o1 is not acted upon, and hence
its pose remains unchanged. At the 4th symbolic state, Justin
has grasped o2 and o3 in its right and left hand, respectively,
and placed them during actions A5 and A6, at positions p(5)

2

and p
(6)
3 , with orientation γ(5)2 and γ(6)3 , respectively.

With each action and state we associate constraints. The
following constraints are given assuming that Aj is per-
formed using the right manipulator. In a similar way we can
define constraints when the left manipulator is used.

B. Placement constraints CP
These constraints are extracted from the symbolic states.

For instance, if a symbolic state contains the predicate On
Cup Tray, one can formulate a set of inequality constraints
on the x and y coordinates of the cup, expressing the fact
that the cup belongs to the rectangle defined by the tray.
More generally, we can express such constraints after a place
action at a state sj for arbitrary regions, bounding them with
a polyhedron P(j)

i . The constraint for an object oi located
in such region can be written as

M
(j)
i p

(j)
i ≤ b

(j)
i ,

where M
(j)
i ∈ Rnij×4, b

(j)
i ∈ Rnij×1 define nij linear

inequality constraints specifying the region where the object
can be. Similar constraints can be extracted from other
predicates (i.e., In, Left, Right, Under, StackedOn,...). Place-
ment constraints also include constraints on desired positions
and orientations of objects: the initial and final poses are
expressed using such constraints.

C. Transfer constraints CT
These constraints reflect the fact that when an object is

manipulated, it undergoes the same translation and rotation
as the TCP of the robot. This occurs during a place action.

3Hence, we limit our analysis to grasps such as top-grasps, or side-grasps



Fig. 4. The grasp constraints for a top-grasp (left) and a general-grasp
(right). In any case, the position of the TCP relative to the object can be
bounded by a polyhedron.

For an object oi undergoing a place action resulting in state
sj we can formulate the following constraints for a top-grasp:

p
(qij)
i − p

(j)
i = r(qij) − r(j)

γ
(qij)
i − γ(j)i = r(qij)γ − r(j)γ ,

where qij denotes the state index during which oi was
grasped prior to its release during state sj (for instance in
the table above, q12 = 1, q25 = 3, q36 = 4). Note that the
constraint on orientations introduces an additional difficulty
due to the periodicity of angular values. Hence, we have to
consider different cases depending on how a place action is
performed (clockwise or counterclockwise), but this is out
of the scope of this paper and does not change our approach
to the problem.

D. Grasp constraints CG
These constraints are formulated each time an object is

grasped. They represent the possible relative positions of the
TCP with respect to the object when the object is grasped or
released. In our scenario, we use only top-grasps, but such
constraints can be formulated for any type of grasp.

For a top-grasp, the TCP is situated exactly above the
object (see Fig. 4), which can be formulated as follows for
an object oi, after the grasp action Aj :

r(j) = p
(j)
i + δkk,

where δk is a constant offset corresponding to the distance
between the TCP and the object when the top-grasp is
performed. For a side-grasp, the TCP is not aligned with
the object along k, but located on a circle around the
object. In the general case, we can formulate constraints as
linear inequality constraints limiting the position of the TCP
relative to the object (see Fig. 4).

E. Manipulator constraints CM
These constraints are the core of our approach. They

are very important for manipulation tasks because they
express the relationship between the position of the TCP
r(j) in the workspace and its possible range of rotation.
This relationship is non-linear and complex to compute. We
approximate it using linear constraints.

In order to find a good linear approximation of these
constraints, we compute two maps off-line, using a similar
procedure to [13]. The workspace of the robot is discretized
into a 3-dimensional grid, and for each cell, the existence of
an IK solution is tested for a large set of possible rotations of

Fig. 5. Schematic 2-d view of the 4-dimensional linear outer approxima-
tions of γmin and γmax by the functions hmin and hmax

the TCP around k (This procedure is done for both arms, and
each type of grasp). From this data, we can build two maps
γmin and γmax, which respectively associate the position r
of the TCP to a lower and upper bound on rγ (see Fig. 5).

γmin : (rx, ry, rz) 7→ rγmin

γmax : (rx, ry, rz) 7→ rγmax.

rγmin and rγmax are computed such that if rγ accepts an
IK solution, then rγ belongs to the interval [rγmin, rγmax].
In order to extract linear constraints from these maps, we
define two functions:

hmax(r
(j), r(j))→ (n

(j)
ub ,m

(j)
ub )

hmin(r
(j), r(j))→ (n

(j)
lb ,m

(j)
lb ),

where r(j) and r(j) are respectively a lower and upper bound
for the variables r(j)x , r

(j)
y and r

(j)
z , i.e., a region of space

for which we want to approximate these constraints. In the
next section, we explain how these bounds are computed,
but essentially, they come from the propagation of other
constraints. These bounds (rx and rx on Fig. 5) are used
to select a subset of points in γmax and γmin, from which
a linear regression is used in order to identify the unit nor-
mals (n(j)

ub ,n
(j)
lb ) and offsets (m(j)

ub ,m
(j)
lb ) of two bounding

hyperplanes (see Fig. 5). Using a subset of points allows us
to get a tighter linear approximation. Then, these parameters
are used to formulate the manipulator constraints, which give
the range of possible rotation of the TCP during an action
Aj :[
n

(j)T
lb mlb

] [
r(j)

1

]
≤ r(j)γ ≤

[
n

(j)T
ub mub

] [
r(j)

1

]
.

This constraint is useful in two ways:
• For a given region of space, it provides bounds on the

possible top-grasps that can be achieved.
• For a given set of top-grasps, it provides a region of

space where these grasps can be achieved.

Finally, we define the vector of all the variables of the
problem:

v = (v1, v2, . . . , vN ),

to which we associate a domain

D = 〈[v1, v1], [v2, v2], . . . , [vN , vN ]〉,



where each variable vi has associated bounds [vi, vi]. The
set of all constraints of the problem

C = {C(j)P , C(j)T , C(j)G , C(j)M }, j ∈ {1, . . . , n}

can be expressed as

Pv ≤ d (1)
Qv = e, (2)

where (1) and (2) represent respectively the inequality and
equality constraints of our problem. In addition, we define
a geometric configuration (see Fig. 3) as a set of values
representing the poses of all objects, and the poses of both
TCPs:

c = {p1, . . . ,pm, r, `}. (3)

IV. USING CONSTRAINTS TO COMPUTE INTERVALS

The geometric constraints of the problem are formulated
with a set of linear inequalities (1) and equalities (2).
The manipulator constraints CM have been formulated in
terms of lower and upper bounds on the actual capabilities
of the manipulator. Consequently, the set of constraints is
conservative, i.e., if a solution exists, it must belong to the
feasible set defined by the constraints (conversely, if the
constraints result in an empty feasible set, the problem has
no solution). Note, however, that
• we still have to search the feasible set for a sequence

of configurations which solves the problem;
• we still have to do motion planning to find collision-free

paths connecting grasp and release positions.
For these reasons, instead of searching for a single solution,
we use the constraints to tighten the bounds of a set of
intervals which contain all the solutions to the problem.

A. Narrowing intervals

Algorithm 1: FilterDomain

Function FilterDomain(D, C)
input : D: a domain

C: a set of linear constraints

1 ε = minimal domain reduction

2 D′ = D
3 repeat
4 D = D′

5 UpdateManipulatorConstraints(C,D)
6 for i← 1 to N do
7 minimize

v
vi, subject to Pv ≤ d,Qv = e

8 vi
′ ← max(vi, v

?
i )

9 maximize
v

vi, subject to Pv ≤ d,Qv = e

10 vi
′ ← min(vi, v

?
i )

11 until Dist(D,D′) ≤ ε or D′ = ∅
12 return D′

The bounds of the intervals are computed using Algorithm
1, a global filtering algorithm (adapted from [14]) which

converges rapidly and detects inconsistency at the first it-
eration. This algorithm solves several linear programs (LP)
in order to find the minimum (resp. maximum) value v?i
of each variable vi. v?i is then used to update the lower
(resp. upper) bound of vi (lines 8 and 10). The values
are updated in a temporary copy of the domain D′ =
〈[v1′, v1′], [v2′, v2′], . . . , [vN ′, vN ′]〉, which is used in order
to measure how much the intervals have shrunk after each
iteration. This is done by the Dist function (line 11), which
returns the average of the differences between upper and
lower bounds in D and D′. The process is repeated until the
domains do not change more than a predefined ε value. The
result is a domain in which the intervals are narrowed with
respect to the constraints, or ∅ if an inconsistency is detected
during the resolution of a LP.

We have modified the original algorithm by adding the
function UpdateManipulatorConstraints(C,D) in the
main loop (line 5). Indeed, after each iteration, the intervals
may shrink. If the intervals representing the TCP positions
are reduced, it is meaningful to refine the manipulator
constraints using the functions hmin and hmax in order to
get a tighter linear approximation of the real problem.

Refining the manipulator constraints while filtering the
domains is a very efficient process. Let us illustrate this with
a numerical example for a pick action. Initially, the problem
consists of four variables representing the position of the
object “cup” located at (0.6, 0.25, 0.1) with orientation 0.

v = (x(0)cup, y
(0)
cup, z

(0)
cup, γ

(0)
cup)

D = 〈[0.6, 0.6], [0.25, 0.25], [0.1, 0.1], [0, 0]〉.

The lower bounds are equal to the upper bounds because the
values of the variables are determined. The pick action leads
us to the creation of 4 new variables for the TCP, which are
initially assigned arbitrarily large intervals:

v = (x(0)cup, y
(0)
cup, z

(0)
cup, γ

(0)
cup, r

(1)
x , r(1)y , r(1)z , r(1)γ )

D = 〈[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[−10, 10], [−10, 10], [−10, 10], [−π, π]〉.

A pick action also generates grasp constraints CG and manip-
ulator constraints CM . We use k = (0, 0, 1) and δk = 0.34:

r(1)x = x(0)cup

r(1)y = y(0)cup − 0.70 ≤ rγ ≤ 2.36

r(1)z = z(0)cup + 0.34 (using hmin and hmax).

After applying the function FilterDomain, D becomes:

D = 〈[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[0.6, 0.6], [0.25, 0.25], [0.44, 0.44], [−0.70, 2.36]〉.

The grasp constraints have propagated the values of the
position of the cup to the position of the TCP. In the second
iteration, the bounds on the orientation of the TCP r(1)γ have
been updated with the linear approximations of the maps,
but since the domain of the TCP is now a single point, these
bounds represent the possible rotation of the TCP at this



point. Hence, in order to pick the cup, the orientation of the
top-grasp must be chosen between −0.70 and 2.36 radians.

This constraint propagation process is interesting for
longer sequences of actions, because it allows us to propagate
the consequences of early choices until the final actions. It
could for instance solve the stacking problem described in
the introduction, and even give an approximation of a region
on the table which is appropriate for placing the first cup.

B. Narrowing intervals during search

In order to find a solution, we use a basic depth-first-
search algorithm, endowed with a pruning step (see algo-
rithm 2: SearchAndFilter (SAF)). Geometric instances of
configurations are not chosen arbitrarily, but such that the
variables representing them (see definition (3)) belong to
their respective intervals. This is the first level of pruning.
But after an action has been chosen (e.g., to place the cup
at position (0.7,−0.25, 0.1) with γ = π/2), the variables
representing this choice are assigned fixed values, so the
corresponding intervals can be reduced to single points (i.e.,
for a variable vi, vi = vi). Then, we can filter the domain
again in order to propagate this choice to other variables
through the constraints. The other intervals will be shrunk
accordingly, which will reduce even more the possibilities
for further actions. This process is repeated each time an
action is chosen, so that intervals are shrunk as the search
progresses.

Algorithm 2: SearchAndFilter

Function SearchAndFilter(c1, Seq,D)
input : c1: a geometric configuration

Seq: a sequence of symbolic actions
D: a domain

1 if Seq = 〈〉 then return c1
2 Action = Seq.head
3 Rest = Seq.tail

4 foreach Ai ∈ geometricInstanceOf (Action) do
5 c2 = getSuccesorConf(c1, Ai)

6 if c2 ∈ D then
7 D′ = assignV alues(D, c2)
8 D′ = filterDomain(D′)

9 if D′ 6= ∅ then
10 feasible = pathP lanning(c1, c2)

11 if feasible then
12 s = SearchAndFilter(c2, Rest,D′)
13 if s 6= false then
14 return 〈c2, s〉

15 return false

Algorithm 2 is initially called with the initial geometric
configuration, the sequence of symbolic actions, and the
initial domain filtered according to the constraints of the
problem. An action Ai is chosen among the possible geo-
metric instances of Action (e.g., 16 for Pick, 256 for Place).

c2 is the result of applying Ai to c1. If this configuration
belongs to the domain, we apply the strategy described
above, that assigns the values to the domain and filters it
again (lines 7-8). If no inconsistency appears, the motion
planning algorithm is called to check if a collision-free path
exists to reach c2. If a path exists, the function is recursively
called on c2 with the remaining actions and the shrunk
domain D′, otherwise the next action Ai is tried. If all the
actions fail, the function returns false to the calling function
via the return statement line 15. If a final configuration is
reached (line 1), the solution is incrementally built (line 14)
and returned to the main calling function. The result is a
list of geometric configurations and paths which are used to
execute the final plan (paths are smoothed after a plan is
found, see end of section V.A).

C. Detecting inconsistency and pruning

One of the main problems of geometric backtracking
is when no geometric instantiation of the action sequence
exists. This happens often during task planning, because no
geometric information is used. For instance, the task planner
may try a sequence in which the right arm of the robot grasps
an object situated on the left side. In the worst case, for
such a sequence, all the space of configurations has to be
searched in order to discover that it is infeasible, which may
be computationally expensive. The only solution to avoid
this is to impose a time limit on the backtracking process.
Unfortunately by doing this, completeness is lost for cases
when the problem is feasible.

On the other hand in our approach, inconsistency can be
detected before entering the backtracking procedure, while
we filter the initial domain according to the constraints of the
problem. This is more efficient since no search is required.
Inconsistency can also be exploited during search in order
to prune out a whole branch of the search tree. This happens
when the problem is initially consistent, and at some point
in the search, an action is chosen that makes the problem
inconsistent. This will be detected during filtering (line 8-9
in the Algorithm 2). Then, we do not need to search further
with this action sequence, and can try another action.

V. EXPERIMENTAL RESULTS

A. Experimental setup

Geometric backtracking might occur while evaluating the
feasibility of a sequence of symbolic actions. What a task
planner does is essentially to evaluate many of these se-
quences. Hence, we evaluated our approach by evaluating
single sequences of actions. We compare our algorithm SAF
to a standard depth-first-search (DFS) procedure, i.e., SAF
without the filtering process (lines 6 to 9), and without using
the argument D′ at line 12. We compare our algorithm
against DFS, because DFS is equivalent to the strategies
used in similar work (see Section II), i.e., a non-informed
backtracking search.

We use a simulation environment provided by DLR for
the robotic platform Justin [3]. Simulation is more suited
for this kind of experiments, but similar tasks have been



Fig. 6. One arm constrained regrasping in Experiment 1

Fig. 7. Hand over in Experiment 2

successfully executed on the real robot (see [15]). Justin is
a humanoid robot with two arms with 7 DoF each, and two
dexterous hands. The robot is situated in front of a table, on
which are placed 30 cm × 30 cm trays/shelves, and some
cups that can be manipulated. The space is discretized with a
resolution of 5 cm for the trays and 15 cm for the table, and
orientations with an angular value of π/8. (which means 36
possible positions on trays, 32 on the table, and 16 possible
orientations). We evaluated our approach on two different
sequences of actions:

In Experiment 1 (see Fig. 6), we used one object, a
sequence of four actions, and only the right arm:
• Pick right top cup1
• Place right cup1 tray1
• Pick right top cup1
• Place cup1 tray2,

where tray1 can be randomly situated from 10 cm to 40 cm
above the surface of the table. We also imposed a constraint
on the final orientation of the cup (γ(4)1 = π).

In Experiment 2, both arms and top/side grasps where
used:
• Pick right top cup2
• Place right cup2 regrasp-region
• Pick left side cup2
• Place left cup2 shelf1,

where the cup is initially randomly located on the right side
of the table, and shelf1 on the left side, at a high position,
with random variation. A constraint was imposed on the final
orientation of the cup γ(5)1 , which was also randomly chosen.

For all experiments, we have measured the number of
geometric configurations explored (#config), and the search
time (time). Both algorithms were run on the same problems,
and 100 runs were conducted. Linear programs were solved
with Gurobi[16], and motion planning with standard rapidly
exploring random tree (RRT). A raw trajectory is computed
to assess reachability during search. The computation of the
final smooth trajectory, which is used for actual execution

Fig. 8. Results for Experiment 1: #config on the left, time on the right.

Fig. 9. Results for Experiment 2: A similar trend is observed.

of the plan, is not shown in the results (it takes 3 to 10 s for
each action). The algorithms are implemented in java, and
run on a MacBook Pro (Intel Core i7 dual-core 2.66 GHz).

B. Results

The results for Experiment 1 and 2 are shown on Fig.
8 and Fig. 9 respectively. The horizontal axis represent the
runs, sorted by increasing number of configurations explored
(resp. time) by the DFS algorithm. Hence, the horizontal axis
represents the complexity of the problem measured “ex post
facto” by DFS. The flat part of the curve represents “simple”
cases, for which both algorithms explore a small number of
configurations. These problems are solved in 1.5 s by SAF,
and 0.75 s by DFS, that is 0.75 s overhead for computing
intervals (with not particularly optimized implementation).
Computing intervals clearly pays off for more “difficult”
cases, i.e., when geometric backtracking is required. On
average, the overhead is largely compensated by the gain
observed in “difficult” cases.

In Experiment 1, geometric backtracking is necessary
when tray1 is high or ill-placed. The possibilities for re-
grasping from there are then limited (see Fig. 6), which
may cause the last place action to fail. Hence, the choice
in the intermediate position and orientation of the cup is
important to complete the sequence. Similarly in Experiment
2, a position for the cup has to be found where both arms can
reach it, and the high position of shelf1 limits the possible
orientations achievable by a side-grasp. Hence, each action
has to be carefully chosen in order to achieve the desired
orientation while respecting kinematic constraints.

In 75% of the cases for experiment 1 (resp. 50% for
experiment 2), the task does not require backtracking, and
both algorithms perform well. But in the remaining cases,
the time spent by DFS explodes because it arbitrarily selects
the configurations, which is often a wrong choice in “difficult



cases”. This entails backtracking, and increases exponentially
the number of configurations explored. On the other hand,
SAF takes advantage of the constraints to choose a suitable
intermediate position, which reduces backtracking. This is
clear on the longest runs where the number of configurations
visited explodes for DFS. In terms of time, the trend is
similar, since the RRT planner is called for each configu-
ration explored. In Experiment 1 however, the time for SAF
increases slightly more than the number of configurations
explored. This is because in Experiment 1, difficult cases
are also complicated in terms of cluttering of the scene,
because tray1 acts as an obstacle. Hence, the RRT planner
takes longer time to compute each path.

For the proposed scenarios, in rare cases (≈1%), the task is
not feasible due to complicated interaction of the constraints
(i.e., because of peculiar initial position and orientation of
the cup, there exists no combination of grasps that can
achieves the final orientation). In these cases, SAF quickly
detects inconsistency in the constraints (100 ms), while DFS
needs to search through the entire space of configurations
(hours). Apart from such peculiar cases, Experiment 2 shows
that a realistic task (placing an object on a shelf at a
given orientation, with regrasping) involves a non negligible
amount of geometric backtracking in 50% of the cases, which
accounts for the interest of the proposed technique.

VI. CONCLUSION

The main contribution of this paper is twofold. First, we
have identified geometric backtracking as one of the major
sources of complexity when combining task and motion
planning. While new approaches that combine task and
motion planning are being increasingly proposed, to the best
of our knowledge the problem of geometric backtracking has
not been explicitly identified and addressed until now. The
second contribution is a method for dealing with geometric
backtracking. The core idea is to extract a set of linear
constraints from the symbolic plan and the kinematics of
the robot, and to apply linear programming techniques to
compute intervals reducing the space of geometric con-
figurations, which avoids unnecessary calls to the motion
planner. The proposed technique is efficient for geometrically
constrained tasks, and tasks in which action dependencies re-
quire backtracking far in the sequence. Another advantage of
the proposed approach is to quickly detect unfeasible cases,
which is an important feature when used in combination with
a task planner.

In this paper, we used a single axis of rotation in order
demonstrate our approach. Ongoing work shows that the
number of axes can be increased without impairing the per-
formance (more maps need to be computed, but this is done
offline), which increases the range of possible manipulations.
An open issue of our approach is how to model linear grasp
constraints for objects with arbitrary shapes. More work
needs to be done in this direction. Regarding scalability, the
number of the LPs to solve linearly depends on the number
of actions. We could cope with longer sequences of actions

by splitting them into sub-sequences where actions are inter-
dependent (i.e., the same object is manipulated).

In this work, we have used intervals to deal specifically
with geometric constraints. Intervals are a compact repre-
sentation which allows us to reason about space without
being affected by the curse of dimensionality caused by the
discretization process. Therefore, we believe that intervals
are appropriate for bridging the gap between task and motion
planning in general.
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