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Abstract In this work, experimental data is used to estimate the free parameters
of dynamical systems intended to model motion profiles for a robotic system.
The corresponding regression problem is formed as a constrained non-linear least
squares problem. In our method, motions are generated via embedded optimization
by combining dynamical movement primitives in a locally optimal way at each time
step. Based on this concept, we introduce a model predictive control scheme which
allows generalization over multiple encoded behaviors depending on the current
position in the state space, while leveraging the ability to explicitly account for
state constraints to the fulfillment of additional tasks such as obstacle avoidance.
We present a numerical evaluation of our approach and a preliminary verification
by generating grasping motions for the anthropomorphic Shadow Robot hand/arm
platform.
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1 Introduction

On the frontier between motion planning and control, Dynamical Systems (DS)
have emerged as a popular way to encode desired movement behaviors in form of
state transition policies. Here, opposed to strictly following pre-planned paths or
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AASS Research Center, Örebro University, Sweden
Tel.: +46-19-302143
Fax: +46-19-303463
E-mail: robert.krug@oru.se

Dimitar Dimitrov
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Fig. 1 The Shadow Robot platform at ISIR, UPMC Paris: The platform utilized in the test
runs in Section 6.2 comprises a 4 DoF arm and a hand with 20 actuated DoF. Five ATI-Nano17
6D force/torque sensors embedded in the fingertips enable tactile sensing.

using spline-based methods [1,2], motions are generated reactively which provides
robustness to perturbations occurring during execution.

In order to generate “appropriate” motion patterns for a targeted robotic sys-
tem, the underlying DS parameter estimation problem1 is commonly solved by
providing data examples specifying desired transitions from given initial to final
states. One way to provide experimental data is to record movements of a human
expert in a Programming by Demonstration setting [4]. Another possibility is to
create data artificially, e. g., in form of smooth minimum-jerk trajectories [5] or as
the pre-computed solutions of optimal control problems [6].

The choice of an appropriate DS for motion generation is typically guided by
the ability of the underlying model to generalize over the provided examples while
guaranteeing certain structural properties, and their potential to express coupling
between the dynamics of different subsystems. Also, in order to facilitate the pa-
rameter estimation problem, simple models are often preferred. Especially in an
imitation learning setting where the provided demonstrations are usually rela-
tively sparse, it might happen that the behavior of the DS in “unexplored” parts
of the state space is unexpected/undesirable. A classical approach for dealing with

1 Also referred to as parameter identification, nonlinear regression or data fitting [3].
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this problem is to enforce certain structural properties of the DS such as Global
Asymptotic Stability (GAS), ensuring that the state is guaranteed to (at least)
converge to the global equilibrium point. One shortcoming of such an approach is
that it does not state any preference about the behavior of the system in relation
to the demonstrations.

Since the considered DS constitute policies over the state space whose state
evolution is guaranteed to converge, they can be seen as global planners which
always reach their goal in the absence of obstacles [7]. In the context of reactive
planning schemes, obstacles are typically dealt with locally - often by modeling
them with repelling potential fields as suggested by Khatib [8].

The presented work originates from efforts related to modeling and genera-
tion of grasping movements, based on demonstrations of taxonomic grasps [9],
for the anthropomorphic Shadow Hand robotic platform [10] which is shown in
Fig. 1. Including the two wrist joints, the hand comprises 20 controlled Degrees
of Freedom (DoF). Even under consideration of possible dimensionality reduc-
tion techniques [11], this requires a model capable of dealing with a substantial
number of DoF. Another desideratum is the ability to incorporate multiple demon-
strations since, even for the same grasp type, grasping motions can exhibit fun-
damentally different dynamics (e.g., when starting the movement from an open
and closed hand configuration). In this work we suggest an approach using a dy-
namical system described by Ordinary Differential Equations (ODE) to encode
demonstrations provided by a user. The method incorporates the concept of Dy-
namical Movement Primitives (DMP) which was proposed by Ijspeert et. al. [12].
The contributions of this work are the following:

(i) We extend the DMP concept to learning of separate DS corresponding
to multiple demonstrations which allows to better capture a motion’s actual un-
derlying dynamics. The corresponding parameter estimation is carried out using
nonlinear optimization (instead of the usually used linear approximation) which
reduces the number of parameters necessary to achieve a good fit to the provided
demonstrations.

(ii) For real-time motion generation and control, we employ online optimiza-
tion and introduce a linear receding horizon Model Predictive Control (MPC)
scheme, which is based on a convex combination of the learned DS ensuring pre-
dictable behavior over the state space. Opposed to the usage of explicit DS as in
related works [12–15], our formulation is able to account for spatial and temporal
constraints to account for additional considerations such as obstacle avoidance.

Part of this work has been published in preliminary form in [16]. Here, we give
a more extensive numerical evaluation of our DMP learning method and extend
our previous online optimization approach to a MPC scheme. The remaining arti-
cle is structured as follows: below, we review related work before we formalize the
tackled problem in Section 3. Our DMP formulation is introduced in Section 4.
In Section 5 we suggest a method to combine multiple DS online in order to gen-
eralize over multiple demonstrations and introduce our MPC scheme for obstacle
avoidance. Next, we use simulations and test runs with a robotic hand to evaluate
the proposed approach in Section 6 before we draw our conclusions in Section 7.
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2 Related Work

Dynamical systems have become a popular framework for encoding motions. In
the DMP framework, the underlying DS (usually referred to as the transforma-
tion system) consists of a predefined stable linear DS which is modulated by a
nonlinear forcing function that decays over time ensuring GAS. Arbitrarily many
DoF can be synchronized via a phase variable (whose evolution is governed by
the so called canonical system) which acts as a substitute of time. The learn-
ing problem is usually solved by fixing the nonlinear parameters of the forcing
function and fitting only the linear parameters with Locally Weighted Regression
(LWR). The DMP framework (see [17] for a recent review) can be used to gener-
ate point-to-point motions as well as periodic movements and lends itself well to
reinforcement learning techniques [18–22]. Although DMP offer a compact way of
capturing the dynamics of a single demonstration, the actual underlying dynamics
can differ substantially in regions of the state space not covered by this demon-
stration. Hence, it is desirable to account for multiple different demonstrations to
increase generalization.

Most works aiming at generalization of DMP are based on statistical learning
techniques. Pastor et. al. [23] build a library of template primitives which can be
used for sequencing movements. Matsubara et. al. [24] learn DMP from multiple
demonstrations and combine them using a style parameter. In [25], a statistical
movement representation using Gaussian Mixture Regression is proposed. Ude
et. al. [13] suggest to keep multiple demonstrated trajectories in memory and to
synthesize new primitives using LWR in order to compute local models. This ap-
proach was extended in [15] to make it feasible for on-line computation by directly
representing demonstrations as DMP and utilizing Gaussian Process Regression to
compute new DMP parameters depending on a given desired goal point. Similarly,
in [26] striking movements for table tennis are learned by mixing primitives via a
gating network.

An alternative DS model structure was proposed by Gribovskaya et. al. [27].
Here, the authors define a locally stable DS via a probabilistic representation of
the demonstrations as a Gaussian Mixture Model (GMM). Their system is time-
independent which, depending on the application, can increase robustness in the
presence of temporal perturbations. Furthermore, only one DS is learned which
potentially allows to capture coupling effects between different DoF. Extending
the work in [27], Khansari-Zadeh et. al. [14] introduce the Stable Estimator of
Dynamical Systems (SEDS) approach. Here, the parameters of the GMM are es-
timated by solving a Nonlinear Programming Problem (NLP). As in [27], SEDS
learns a single time-independent coupled DS with additional constraints guaran-
teeing that the system is GAS. However, as stated by the authors in [14], with
increasing number of DoF the learning problem can become intractable. Also, since
the behavior of the DS in regions of the state space not covered by demonstrations
depends on the specific parameters of the underlying GMM, there is no direct way
of predicting the resulting state evolution.

In a reactive planning setting based on DS, obstacles are typically dealt with
locally by augmenting the DS formulation with repelling potential fields [8,28].
Alternatives include the use of coupling feed-forward terms [29] and appropriate
modulation of the original DS depending on the distance of the current state to
the obstacles [7,30]. With increasing maturity of online optimization algorithms
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and solvers, it is becoming feasible to formulate obstacles directly as constraints
in the state space [31,32]. Approaches in this mould require online solution of
optimization problems during motion execution, in order to ensure that the con-
straints are obeyed at each point in time. Variants of this concept have recently
been successfully applied to on-line path planning schemes for autonomous/semi-
autonomous vehicles [33,34] and multi-robot production systems [35]. In a similar
work, Da Silva [36] use MPC to track demonstrated human motions in simulation.

3 Problem Description and Assumptions

Nomenclature

Indices

m Trajectory point index, m ∈ {1, . . . ,M}
d Demonstration index, d ∈ {1, . . . , D}
n Gaussian basis function index, n ∈ {1, . . . , N}
f DoF index, f ∈ {1, . . . , F}
p Preview window index, p ∈ {1, . . . , P}
h Hyperplane index, h ∈ {1, . . . , H}
k Discrete time index, k ∈ Z+

General

q Joint configuration, q = [q1, . . . , qF ]T

x State vector, x = [q, q̇]T

q̄ Discretized demonstration, q̄ = [q̄1, . . . , q̄M ]T

t̄ Dilated time, t̄ ∈ [0, 1]
Φ(·) Dynamical Movement Primitive, Φ : R2 ×R→ R2

s Phase variable, s ∈ R
u(·) Forcing function, u : R→ R
Ψn(·) n-th GBF, Ψn : R→ R
w GBF weights, w = [w1, . . . , wN ]T

p GBF centers and widths, p = [c1, σ1, . . . , cN , σN ]T

ε Basis function limit at s = 1, ε ∈ R+

τ Motion duration, τ ∈ R+

A Continuous system matrix, A ∈ R2×2

B Continuous input matrix, B ∈ R2

Ā Discrete state transition matrix, Ā ∈ R2×2

B̄ Discrete control matrix, B̄ ∈ R2

κ, ν Penalty coefficients, κ ∈ R+, ν ∈ R+

C Selection matrix, C ∈ R2

(H, e) State constraints, H ∈ RC×F , e ∈ RC

Our goal is to develop a reactive motion generation system whose output tra-
jectories resemble given demonstrations and which allows to incorporate state
constraints for auxiliary targets such as obstacle avoidance. To this end, we learn
movement primitives by fitting the parameters of dynamical systems, described
as a set of ODE with a single global attractor point, to experimental data pro-
vided in form of multiple point-to-point trajectories in either joint- or task-space.



6 Robert Krug, Dimitar Dimitrov

The state evolution of these dynamical systems, obtained by integrating from a
given initial state, describes motion profiles which then can be converted to motor
commands for the targeted platform by a low-level tracking controller. Important
requirements are the ability to account for inherently different dynamics in the
demonstrations and ensuring predictable behavior in regions of the state space
which were not covered by the demonstrations. Also, a model structure not suffer-
ing from the curse of dimensionality is necessary, since we aim at platforms with
a substantial number of DoF.

For convenience and without loss of generality, all definitions regarding dy-
namical systems and their respective states are stated under the assumption of
an implicit change of variable, such that the equilibrium point of the considered
system is at the origin [37]. A demonstrated point-to-point trajectory is given as
position, velocity and acceleration vectors q̄, ˙̄q, ¨̄q ∈ RM sampled at M discrete
points in time. The trajectory is rescaled on a time interval between zero and one,
i.e., t̄m ∈ [0, 1], m = 1, . . . ,M , in order to make different trajectories compara-
ble. In accordance with the above assumption regarding the change of variable,
the trajectory is shifted to converge at the origin, i.e., q̄M = 0. For simplicity of
notation we assume that each trajectory is sampled with the same number M of
points and that the same number D of demonstrations is provided for each DoF,
although these are not explicit requirements of the proposed methods. Although
we present our approach for motion generation in configuration space, it is equally
applicable in task space.

4 Learning Dynamical Movement Primitives

In this Section we revisit the DMP learning approach described in [16] and first
show, for one DoF, how to learn a motion primitive from a single demonstration
by solving a NLP. Subsequently, we extend the formulation to account for multiple
demonstrations which allows to encode fundamentally different dynamics for the
same DoF.

4.1 Encoding a Single Demonstration

The motion of one DoF, corresponding to a given demonstration, is encoded in a
DS Φ : R2 ×R→ R2 formulated as the ODE

ẋ(t) = Φ (x(t), s(t);w,p) ,

depending on parameters w and p, the state x(t) ∈ R2, and a phase variable
s(t) ∈ R. The phase variable provides a convenient way to scale time in order
to modify the duration of the resulting motion. Its evolution is governed by the
following simple dynamics

ds

dt
= ṡ = 1/τ, (1)

where the scalar constant τ ∈ R+ determines the movement’s duration. The
DS, together with the phase variable driving it constitutes a DMP. Synchro-
nized motions across multiple DoF, each of which is associated with a separate
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Fig. 2 Gaussian basis functions: Shown are N = 5 basis functions Ψn obtained via solving (4)
for the demonstration in Fig. 3. The widths decrease with the distance to s = 1 according to
the constraint σn ≤ σ̂(1− cn) in (4), ensuring negligible magnitudes of u for s > 1

DS, are achieved by using a common phase variable s(t). A DS consists of a
linear mass-spring-damper excited by a nonlinear input u(s) : R → R which
is often referred to as a forcing function. As in [12], we choose to represent
the forcing function as a weighted sum of N Gaussian Basis Functions (GBF)
with weights w = [w1, . . . , wN ]T ∈ RN , respective centers cn ∈ [0, 1] and widths
σn which are collected in the vector p = [c1, σ1, . . . , cN , σN ]T ∈ R2N . The system
Φ(x(t), s(t);w,p) is given by[

q̇

q̈

]
︸︷︷︸
ẋ

=

[
0 1

α/τ2 β/τ

]
︸ ︷︷ ︸

A

[
q

q̇

]
︸︷︷︸
x

+

[
0

1/τ2

]
︸ ︷︷ ︸
B

u(s) (2)

u(s) =
N∑
n=1

Ψn(s; cn, σn)ωn, (3)

where α ∈ R− and β ∈ R− are predefined such that critical damping is enforced
and Ψn = exp

(
−0.5(s− cn)2/σ2n)

)
. In the original DMP framework [12], the phase

variable s is governed by converging dynamics and used to scale the inputs u in
order to guarantee GAS. In our formulation this is not required since we compute
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the parameters of the DS by solving an optimization problem in which we enforce
appropriate constraints to ensure GAS as shown in Section 4.2.

To generate a motion, s is reset to zero and the DS in (2) is integrated from a
given initial state. When s reaches one, the forcing terms u become negligible. The
time evolution of the phase variable, and thus the movement duration, is governed
by τ . Our choice of the system in (1) governing the evolution of the phase variable
was made for simplicity. The use of alternative canonical systems is possible but
would not qualitatively change the results.

4.2 Parameter Estimation via Nonlinear Programming

Learning a DMP amounts to estimating the GBF parameters w and p of the
forcing function u(s) in (3). This is a nonlinear problem which is usually tackled
by fixing the nonlinear parameters in p according to some heuristics (e.g., uniform
Gaussian widths σn and equidistantly spaced centers cn). Here, in a first step, we
formulate a NLP in order to fit the parameters for a single system Φ(x, s;w,p) to a
provided demonstration. The goal is to learn forcing terms u such that the system
resembles the dynamics of the demonstration. This is achieved by minimizing the
squared L2 norm of the acceleration residual between the demonstrated data and
the output generated by the model. The corresponding constrained nonlinear least
squares problem is given below2

minimize
w,p

1

2

M∑
m=1

[
CΦ (x̄m, s̄m;w,p)− ¨̄qm

]2
(4)

subject to (5)

σn ≤ σ̂(1− cn), n = 1, . . . , N

0 ≤ cn ≤ 1, n = 1, . . . , N

∆cn ≤ cn − cn−1, n = 2, . . . , N,

where x̄m = [q̄m, ˙̄qm]T and s̄m = t̄m due to the time scaling of the demonstrations
as stated in Section 3. C = [0, 1] is a selection matrix and ∆c ∈ R, 0 ≤ ∆c ≤
1/N is a constant limiting the minimum distance between the centers of basis
functions in order to prevent overlapping. The scalar ε ∈ R, 0 < ε � 1 can be
used to arbitrary limit the value of the basis functions at the end of the interval
s ∈ [0, 1], i.e., Ψn(1) ≤ ε,∀n, which ensures GAS. To this end, σ̂ =

√
−0.5/log(ε)

corresponds to the width of a basis function centered at cn = 0. To provide the
solver with a feasible initial guess, the problem above is solved with fixed basis
functions centers and widths which reduces (4) to a Quadratic Programming (QP)
problem. Here, the N initial centers c̃n are equidistantly spaced on the interval
s ∈ [0, 1] and the associated widths are located on the corresponding constraint
in (5) such that σ̃n = σ̂(1− c̃n), ∀n.

An example of the parameters p obtained by solving (4) is shown in Fig. 2.
The corresponding demonstration, along with a comparison to a solution generated
with heuristically fixed nonlinear parameters is depicted in Fig. 3. Evidently, by
including the nonlinear parameters p in the decision variables, a better fit can be
obtained as shown in Section 6.1.

2 This problem is not convex and thus, in general, only a local minimizer will be found.
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Fig. 3 Comparison of parameter estimation methods: Shown is the reproduction ability of
the DS in (2), parametrized by solving (4), compared to a DS using equidistantly spaced
basis functions and uniform basis function widths. The result was generated by integrating
the respective systems from the initial state x̄(0) of the demonstration. The demonstration
q̄(t) is denoted in pink, the dashed black line represents the position curve q(t) yielded by our
DS, the dashed magenta line shows the result obtained from the DS with predefined nonlinear
parameters p (q̃(t) was generated with the code accompanying [12]). In both cases, N = 5
basis functions were used.

4.3 Encoding Multiple Demonstrations

In the next step, the goal is to fit (for one DoF) the forcing terms of D dynamical
systems to D provided demonstrations such that the d-th DS encodes the dynamics
in the vicinity of the d-th demonstration. One could simply use the NLP in (4)
to identify w ∈ RN and p ∈ R2N separately for each DS which would amount
to estimate 3DN parameters. Instead, we reformulate (4) such that the nonlinear
basis function parameters p are shared among the D dynamical systems while the
d-th DS has associated linear parameters wd. The objective function becomes

minimize
w1,...,wD,p

1

2

D∑
d=1

{
M∑
m=1

[
CΦd

(
x̄d,m, s̄m;wd,p

)
− ¨̄qd,m

]2}
(6)

and the problem is subjected to the constraints in (5). The above formulation
allows a fit with N(D+2) parameters and was used for the evaluation in Section 6.
The concept of sharing basis functions between motion generators is similar as the
one used by Rückert and d’Avella in [38], where it is put in the context of muscular
synergies.
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Fig. 4 Convex combination at time tk: The pink shaded area represents the convex hull over
the reference states in R[k], the projection R[k]λ[k] of the current state x[k] onto this convex
hull is indicated by the blue cross, ∆x signifies the projection residual.

5 Real-time Control with Movement Primitives

In this section we first discuss how to form a new implicit DS based on a locally
optimal combination of the previously learned systems (each of which corresponds
to a demonstration). Then, we proceed to derive our MPC scheme with state
constraints.

5.1 Generating Locally Optimal Motions

Let xd[k] denote the state at time tk obtained by integrating Φd(xd, s) from t = t1
to t = tk starting from x̄d(0) (i.e., from the initial state of the d-th demonstration).
Our approach makes dual use of the dynamical systems. First, the set of reference
states collected in the columns of the matrix

R[k] = [x1[k], . . . ,xd[k]] ∈ R2×D (7)

provides, at each time tk, a representation of the corresponding demonstration
encoded in Φd(xd, s). Second, we formulate a movement primitive comprising a
new DS where the forcing term is formed as a convex combination of individual
inputs ud[k] corresponding to the systems Φd(xd, s)

ẋ[k] = Ax[k] +Bu[k]Tλ[k], (8)

where u[k] = [u1[k], . . . , uD[k]]T and λ[k] = [λ1[k], . . . , λD[k]]T . Here, A and B

are the same as in (2). Equation (8) describes an implicit DS, where by implicit
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we imply that the system is not given in closed form. Rather, its definition relies
on an online solution of an optimization problem. Here, the coefficients λd[k] are
recomputed at every time-step tk by minimizing the residual

∆x[k] = x[k]−R[k]λ[k] (9)

of the projection of the current state x[k] of the system onto the convex hull over
the current reference states in the columns of R[k] (see Fig. 4). The associated
minimization problem is stated in the QP below

minimize
λ[k]

‖∆x[k]‖2H + κl[k]Tλ[k] (10)

subject to 1
Tλ[k] = 1,

λ[k] ≥ 0,

where the elements ld[k] = ‖x[k] − xd[k]‖2 of the vector l[k] = [l1[k], . . . , lD[k]]T

describe the euclidean distances of the reference states to the current states, κ ≥ 0
is a (small) scalar and 1 is an appropriately dimensioned column vector of ones.
The second term in the objective function in (10) is added in order to resolve the
redundancy between multiple equivalent solutions for λ[k] which can occur if the
residual ∆x is zero. We define ‖z‖2H = zTHz for some z ∈ RZ and a positive semi-
definite (and symmetric) matrix H ∈ RZ×Z . Let the vector λ? = [λ?1, . . . , λ

?
D]T

denote a solution of (10) (i.e., λ[k] = λ?). The coefficients λ?d are recomputed only
at discrete steps k according to (10) and are assumed to be constant within the
time window [tk, tk+1].

In order to characterize the behavior of the newly formed DS in (8) we formu-
late the following proposition.

Proposition 1: The projection residual ∆x[k] converges onto the convex hull over

the reference states in R[k] with dynamics governed by the matrix A

∆ẋ[k] = A∆x[k], t ∈ [tk, tk+1].

If the convex hull over the states in R[k] contains the current state x[k], the projection

residual ∆x[k] is zero and the next state x[k + 1] will be a convex combination of the

reference states in R[k + 1], i. e.,

x[k + 1] = R[k + 1]λ?.

A proof of the above proposition is given in Appendix A. Proposition 1 summarizes
a key concept in this work. The DS in (8) accounts for different dynamics encoded
from multiple demonstrations while exhibiting a predictable behavior over the
whole state space. This is achieved by encoding a representation of the underlying
demonstrations by means of the DS itself. States inside the convex hull of the
reference states evolve according to a convex combination of the references. The
matrix A in (8) governs the evolution for states outside the convex hull of the
references and can be tuned according to the application. As in the original DMP
formulation [12], arbitrary many DoF can be synchronized via a common phase
variable s. What sets this work conceptually apart from existing approaches such
as presented in [23,13–15,6], is the ability to modify the dynamical system which
drives the motion on the fly via embedded optimization. This is a useful ability in
the context of, e. g., obstacle avoidance and disturbance compensation as shown
in the following.
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5.2 DMP-based Model Predictive Control

A remaining question is how appropriate the trajectories generated by the policy
in (8) are in the presence of obstacles which are not known a priori. One could
imagine an example were the combination of the reference dynamics leads to col-
lisions with unforeseen obstacles.

Opposed to existing approaches [24,13,15,26] which use statistical learning
techniques to combine pre-learned DMP in order to generalize to novel situations,
the suggested method provides a straightforward way to incorporate state con-
straints. Since the approach allows to modify the motion generating system in (8)
at each time step, we suggest an alternative way of handling obstacles using model
predictive control under a set of spatial and temporal polyhedral constraints which
are designed to lead the system around a given (potentially moving) obstacle.

To start, let us note that the matrix formed by the product Bu[k] ∈ R2×D

in (8) can loose rank (e. g., towards the end of a motion when the elements of
u[k] vanish) and that the vector λ[k] is bound by the convex constraints in (10).
Therefore, to ensure the ability to satisfy additional state constraints, we augment
the system in (8) with an auxiliary control input λ̃ and discretize to obtain

x[k + 1] = Āx[k] + B̄µ[k]Tγ[k], (11)

where Ā and B̄ are state transition matrix and control matrix of the discrete
system, µ[k] = [u[k], 1]

T ∈ RD+1 and γ[k] =
[
λ[k], λ̃[k]

]T ∈ RD+1 denotes the aug-
mented control vector. Next, we want to predict the residual of the projection of
the current state on the reference states P step forwards in time. Inserting the aug-
mented system in (11) in the residual formulation in (9) and performing recursion
yields


∆x[k]

∆x[k + 1]
...

∆x[k + P ]


︸ ︷︷ ︸
∆X ∈ R2(P+1)

=


Ā

0

Ā
1

...

Ā
P

x[k] +Z


γ[k]

γ[k + 1]
...

γ[k + P ]

 ,
︸ ︷︷ ︸
Γ ∈ R(D+1)(P+1)

(12)

where the matrix Z ∈ R2(P+1)×(D+1)(P+1) is given as

Z =


−R[k] 0 . . . . . . 0

B̄µ[k] −R[k + 1] 0 . . . 0

ĀB̄µ[k] B̄µ[k + 1] −R[k + 2] 0 0
...

...
...

. . . 0

Ā
P−1

B̄µ[k] Ā
P−2

B̄µ[k + 1] . . . B̄µ[k + P − 1] −R[k + P ]

 .

Without consideration of additional state constraints, we can now formulate a
receding horizon MPC scheme as the following optimization problem which needs
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to be solved at every time step tk

minimize
Γ

‖∆X[k]‖2H + κl[k]Tλ[k] + ν

P∑
p=0

λ̃[k + p]2 (13)

subject to 1
Tλ[k + p] = 1, p = 0, . . . , P,

λ[k + p] ≥ 0, p = 0, . . . , P.

Here, compared to the previous formulation in (10) where only the current projec-
tion residual at time tk is optimized, the minimization is carried out over a tem-
poral preview window of P steps according to (12). The penalty factor ν in (13) is
chosen to be large in order to suppress the auxiliary control inputs λ̃[k + p] since
their role is to deviate the system only if additional constraints need to be obeyed
as discussed below.

5.3 State Constraints for Obstacle Avoidance

Here, the goal is to avoid obstacles in state space. For simplicity, we only consider
constraints on the positions q = [q1, . . . , qF ]T of the F state vectors xf in (13)

although velocity constraints on q̇ = [q̇1, . . . , q̇F ]T can be handled in the same
fashion. To ensure convexity, we only consider linear state constraints of the form
hT q+ e ≤ 0 which facilitates the solution of the underlying optimization problem.
Here, h ∈ RF is a unit normal vector and e is a scalar offset.

In our framework one DS in (11) is learned to guide each DoF. At this point, the
state evolutions of these DS are independent, there is only a potential temporal
coupling via shared phase variables s driving the inputs u[k] in (11). Here, we
couple J systems in (11) via the state constraints which requires extending the
MPC scheme in (13) as shown below

minimize
Γ 1,...,Γ F

F∑
f=1

(
‖∆Xf [k]‖2H + κlf [k]Tλ[k] + ν

P∑
p=0

λ̃f [k + p]2
)

(14)

subject to

1
Tλf [k + p] = 1, p = 0, . . . , P, f = 1, . . . , F

λf [k + p] ≥ 0, p = 0, . . . , P, f = 1, . . . , F

H[k + p]T q[k + p] +E[k + p] ≤ 0, p = 1, . . . , P. (15)

We consider C constraints at a given time step in the preview window, their
normals are collected in the matrixH[k + p] = [h1[k + p], . . . ,hC [k + p]]T ∈ RC×F ,
E[k + p] = [e1[k], . . . , eC [k]]T holds the corresponding offsets. To account for the
coupling introduced by q[k+ p] in (15), we have to consider the evolutions of each
of the F states xf [k + p]

xf [k + 1]
xf [k + 2]

...
xf [k + P ]

 =


Ā

1

Ā
2

...

Ā
P

x[k] + ΥΓf ,
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where the matrix Υ ∈ R2P×(D+1)(P+1) is given as

Υ =


B̄µ[k] 0 . . . . . . 0

ĀB̄µ[k] B̄µ[k + 1] 0 . . .
...

...
...

... 0
...

Ā
P−1

B̄µ[k] Ā
P−2

B̄µ[k + 1] . . . B̄µ[k + P − 1] 0

 .

Note that the state coupling is only introduced in the constraints of (14), not
the objective function which is simply a sum over the objectives in (13). Thus,
if no constraint in (15) is active at a given time step, the resulting behavior is
identical to the one produced by the uncoupled scheme in (13) and resembles the
learned trajectories. Only if constraints in (15) are active, the auxiliary controls
λ̃f [k + p] cause deviations in order to satisfy these constraints. Considering the
choice of objective function in (14) and assuming a long enough preview horizon,
the stability of the proposed controller can be guaranteed [39]. In the tests reported
in Section 6.3, we experimented with horizon lengths of P = 5 and P = 10 time
steps which led to stable behavior.

A remaining issue is how to extract appropriate spatio-temporal constraints
for obstacle and self-collision avoidance from the robot’s environment. This is
an open research question and is out of the scope of this work. Previous works
suggest heuristics based on simplified pre-planned paths [33,34]. Here, we only
consider a point-robot model and introduce a simple heuristics in order to be able
to verify our MPC scheme in Section 6.3. We assume that an obstacle is repre-
sented as a convex hull in H-representation, given as a set of bounding hyperplanes
Hh = {(hh, eh)}, h = 1, . . . , H, where hh ∈ RF denote the associated unit normal
vectors and ef the corresponding distances to the origin.

At each time step tk we want to determine whether to augment (H[k+P ],E[k+
P ]) in the optimization problem in (14) with a new constraint at the end of the
preview horizon (i. e., at time tk+P ). To this end, we formulate the following Linear
Program (LP)

minimize
ξ∈R

ξ (16)

subject to

hTh (q[k + P ] + ξq̇[k + P ] + eh) ≥ 0, h = 1, . . . , H,

ξ ≥ 0,

which projects the state q[k+P ] along the ray corresponding to the velocity q̇k+P
onto the obstacle as illustrated in Fig. 5. If the above LP is feasible (i. e., the state
evolution “heads towards” the obstacle), the hyperplane containing the projection
forms a new constraint in (15).

The computational load of the presented MPC scheme at each time-step k

consists of integrating the canonical system in (1) and the FD dynamical systems
in (3), where F is the number of DoF and D denotes the number of DS (each
corresponding to a demonstration) per DoF. Furthermore, the solution of J QP’s
according to (14) and an LP according to (16) is required.
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Fig. 5 Finding Constraints for obstacle avoidance: Shown is an example in a 2-dimensional
configuration space, (i.e., F = 2) with a preview window size of P = 2. The velocity ray at
q[k + 2] intersects hyperplane H4 at the point q[k + 2] + ξq̇[k + 2], which is indicated by the
black cross. Thus the constraint with normal o4 and offset f4 associated with H4 is added
to (15).

6 Evaluation

In this section we evaluate, by means of simulations and test runs on the Shadow
Robot platform, the application of the suggested methods to offline learning of
motion primitives from experimental data and the usage of these primitives for
real-time motion control. To this end we used a sensorized glove to record tax-
onomic grasps on two cylindrical objects with different diameters as shown in
Fig. 6(a). Opposed to [16], where we only performed one grasp type, in this work
we chose to evaluate the approach on the following nine grasp types according
to [9]: Tripod, Parallel Extension, Palmar Pinch, Large Diameter, Small Diame-
ter, Lateral, Precision Sphere, Power Sphere and Inferior Pincer. The recordings
were made while starting from open and closed initial hand configurations re-
spectively. The Shadow hand’s joint angles were obtained via a linear regression
mapping from the glove’s sensor space to the robot’s joint angle space. As the goal
is to model grasp joint motions using DMP driven by a common phase variable s,
the corresponding demonstrations have to live on a common time interval. Thus,
all trajectories were segmented from the time a non-zero velocity was detected at a
joint, until all joints stopped moving. Furthermore, the demonstrated trajectories
were smoothed by means of a linear least squares regression and numerically dif-
ferentiated to obtain velocities and accelerations. After rescaling and shifting, as
described in Section 3, the trajectories were re-sampled with a number of M = 100
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(a) Teaching grasp motions

(b) Teaching final grasp configurations

Fig. 6 Teaching procedure: (a) An Immersion Cyberglove-18 was used to record joint angles
during grasp motions at a sample rate of 30 Hz. Starting from open and closed initial hand
configurations, grasps according to the taxonomy in [9] were performed. (b) Corresponding
final grasp configurations were obtained by kinesthetic teaching and recording the robot’s
hand joint encoder values.

points each. A standard PC equipped with 6 GB memory and a 3.40 GHz Intel
i7-2600 CPU was used to generate the presented results.

6.1 Reproduction and Generalization Capabilities

Here, the aim is to assess the introduced offline DMP learning scheme in (6). For
the F = 20 DoF of the Shadow hand we used, for each of the aforementioned nine
grasp types, demonstrated trajectories to estimate the free parameters of 20 motion
primitives in (8) as described in Section 4.3. Thus, a total of 180 trajectories were
used for the evaluation, the utilized fixed parameters are summarized in Table 1 in
Appendix B. The constrained nonlinear least squares problems in (6) were solved
with a Sequential Quadratic Programming (SQP) algorithm, utilizing the ACADO
Toolkit [40].

In order to quantify the reproduction capabilities of the learned DMP, we re-
produced the demonstrated trajectories by integrating (8) starting from the same
initial values as the corresponding demonstrations. We experimented with different
numbers N of basis functions in (3) and compared to results generated with DMP
learned with fixed basis function parameters as in [12]. The resulting position-
and velocity mean square errors (MSE), as well as the computation times for solv-
ing (6) for different numbers N of basis functions are summarized in Table 2 in
Appendix B. Additionally, the position/velocity MSE are also depicted in Fig. 7.
It is evident that, for small numbers of employed basis functions, the nonlinear
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Fig. 7 Reproduction quality: Illustrated are the MSE describing the deviation from the trajec-
tories produced by the systems in (8) from the learning data. Shown are the MSE for position
(left) and velocity (right) for different numbers N of basis functions and for the basis function
parameters p in (4) fixed/optimized.

learning scheme vastly outperforms linear learning with fixed basis function pa-
rameters. Also, the mean computation times for solving (6) while including the
basis function parameters in the decision variables are within reasonable bounds
(e.g. for N = 7 basis functions, the mean computation time is 6.2s).

To gauge the generalization capabilities of the learned models for the considered
point-to-point movements, we performed simulations by initializing our combined
motion primitive formulation in (8) from different initial states. Exemplary, the
results for the dynamical system describing the flexion/extension motions of the
middle fingers Metacarpophalangeal (MCP) joint (the MCP joints connect the
proximal phalanges of the fingers to the palm) during a tripod grasp are shown
in Fig. 8. Depicted are the obtained position, velocity and phase plane curves. As
argued in Section 5, for states evolving inside the convex hull over the reference
states the distance ratio to the references is governed by the convex combination
coefficients computed as a solution of (10). States outside the convex hull over the
references are attracted towards this convex hull according to dynamics governed
by the matrix A in (8). It can be seen that the model can reproduce the demon-
strated trajectories with high fidelity while exhibiting a deterministic behavior in
regions of the state space not covered by the demonstrations.

Furthermore, we analyzed the behavior of the model in the presence of state
disturbances. We investigated separate position and velocity disturbances as well
as a combined disturbance. When, at time tk, the system is perturbed inside
the convex hull of the reference states, the update of the convex combination
coefficients according to (10) at time tk+1 adjusts the future evolution of the
system according to the reference states at time tk+1. An example is shown in
Fig. 8(d) where a trajectory was started at the initial state x̄2(0) corresponding to
the second demonstration and is pushed onto the reference trajectory associated
with the first demonstration. After adjusting the combination coefficients in the
next time step, the system continues to evolve according to x̄1. Disturbances with
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q̄d(t)
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q̄4

(a) Position vs. time

˙̄qd(t)
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˙̄q3

˙̄q2

˙̄q1

(b) Velocity vs. time

x(t)

x̄d(t)
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x̄4

(c) Phase plane generalization

x(t)

x̄d(t)

x̄1x̄2x̄3

x̄4

(d) Phase plane - disturbance compensation

Fig. 8 Generalization over demonstrations and disturbance compensation: Black dashed lines
represent the trajectories obtained by simulating the dynamical system in (8), describing the
tripod grasp motion primitive for the MCP joint, starting from different initial conditions. The
system was parametrized via the demonstrated trajectories denoted in pink. Demonstrations
d = 1 and d = 3 are associated with grasps made on a cylindrical object with diameter 65
mm starting from closed and open initial hand configurations respectively, d = 2 and d = 4
correspond to grasps on an object with diameter 33 mm. (a) and (b) depict the curves for
position and velocity, the corresponding phase diagram is shown in (c). The behavior of the
system in the presence of disturbances is depicted in (d). After evolving unperturbed initially,
the system was subjected to disturbances in position, velocity and a combined disturbance
respectively.

states resulting outside the convex hull of the references again cause the system to
converge towards the projection onto this convex hull with dynamics as specified
in (8).

6.2 Verification on the Shadow Robot Hand/Arm Platform

Here, the goal is to demonstrate the feasibility of the developed motion primitives
for real-time motion generation and control rather then to show a fully applicable
grasping/manipulation system for which other components such as grasp planning
and object perception are necessary which are not in the scope of this work. A
standard laptop was used to control the Shadow Robot platform via the Robot
Operating System (ROS) framework at 100 Hz. Compared to [16], where only
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Fig. 9 Tripod grasp primitives triggered from different initial configurations: Synchronized
finger joint movements are generated by means of integrating motion primitives corresponding
to (8) which are driven by a common phase variable. Top row: Starting from an open hand
configuration; bottom row: starting from a closed hand configuration.

a single grasp type was used, here we use the aforementioned nine grasp types
considered feasible for the specific mechanical structure of the Shadow hand. The
learned motion primitives were used to generate motion profiles for the 20 DoF
of the Shadow hand. Appropriate motion profiles for the 4 DoF of the arm were
generated with the ROS joint spline trajectory controllers, such that hand and arm
motion comprised the same duration. Desired final hand/arm configurations were
obtained via kinesthetic teaching, as shown in Fig. 6(b), and subsequently adding
an empiric small increment to the joint values in order to ensure sufficient squeez-
ing of the object. Then, the motion primitives for the hand joints were triggered
from initial conditions corresponding to open, pronated and closed hand configu-
rations respectively which allowed to successfully execute synchronized grasp and
subsequent lifting motions as shown in Fig. 9. Here, the arm joints were moved
between predefined start- and final positions. One encountered problem was that
the ROS messaging system introduced unacceptable feedback delays and that the
available low-level position PID tracking control was of limited quality. Thus, the
test runs were carried out in an open-loop fashion, i. e., the primitives were only
used for online planning of reference profiles between the given start and end po-
sitions without considering state feedback. Despite the obvious limitations in the
low-level control as argued in [16], the grasping tasks were conducted successfully.

6.3 Obstacle Avoidance via State Constraints

Here, we want to discuss the behavior of the MPC scheme formalized in (14) under
the influence of state constraints. To this, end we give two illustrating examples in
a two-dimensional (i.e., F = 2) obstacle space. The fixed parameters which were
used in (14) are summarized in Table 3 in Appendix B. We use two primitives
in (11), each of which learned from the same D = 6 synthetically generated ex-
amples of minimum-jerk trajectories. Figure 10 shows the evolution of the system
at different points in time under influence of a single spatial constraint which is
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(a) Obstacle space (b) Position vs. time

Fig. 10 Constraint satisfaction: Shown is the evolution of a 2D system driven by two prim-
itives in (11) controlled by the MPC scheme in (14) with a preview window size of P = 10.
The positions q computed by the controller are depicted with dashed black lines, the pink
lines indicate the evolution of the encoded demonstrated position curves qd. The constraint
vanishes after t = 0.7s which allows the system to converge to its equilibrium. (a) shows the
behavior in obstacle space, (b) depicts the according position curves.

active during part of the motion. The controller in (14) computes auxiliary control
inputs λ̃[k + p] such as to obey the constraint.

A second example is depicted in Figure 11. Here we employ the heuristic for the
automatic extraction of appropriate constraint hyperplanes, as it was presented in
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Fig. 11 Automatic constraint update: Shown is the obstacle avoidance behavior of the system
controlled by (14) with a preview window size of P = 5, while using the heuristic according
to (16) in order to extract constraints. The system was initialized with different start states,
positions q computed by the controller are depicted with dashed black lines, the pink lines
indicate the evolution of the encoded demonstrated position curves qd.

Section 5.3, to avoid a convex obstacle. Shown are the trajectories generated when
starting from different points in the obstacle space.

7 Conclusions

In this work we present an approach using demonstrated motion data in order
to parametrize dynamical systems for movement generation via nonlinear opti-
mization. Offline learning is used to fit the parameters of dynamical systems to
the demonstrated data. For real-time control, we introduce a MPC scheme based
on a locally optimal combination of the previously learned DS. This results in a
deterministic behavior in state regions which were not explored during the demon-
strations. Furthermore, the demonstrations can be reproduced with high fidelity
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while relying on a comparatively small number of parameters. We assessed the
introduced method by means of parametrizing the proposed model from demon-
strations of grasp movements and subsequent simulations and test runs with the
Shadow Robot platform. Our approach affords the flexibility to modify the con-
trol inputs of the implicit system used for motion generation at each time-step,
which allows to incorporate state constraints to account for additional tasks such
as obstacle avoidance. The use of embedded optimization for addressing the on-
line obstacle avoidance problem is a promising approach already heavily utilized
in other scientific fields, this work is a first step towards a reactive on-line plan-
ning/control scheme. Future work will aim at extending the introduced obstacle
avoidance scheme beyond the presently used point-robot model in order to make
it applicable to real-life robot motion execution tasks.
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A Proof of Proposition 1

To prove Proposition 1 in Section 5 we consider for simplicity zero-order hold discretized
systems, although the proof can be trivially extended to handle the continuous time case. The
respective discretizations of the systems in (2) and (8) are

xd[k + 1] = Āxd[k] + B̄ud[k] (17)

x[k + 1] = Āx[k] + B̄u[k]Tλ∗, (18)

where Ā and B̄ are the respective state transition matrix and control matrix of the discrete
system. Substituting (17) and (18) in (9) for time tk+1 results in

∆x[k + 1] = Ā (x[k]−R[k]λ∗)︸ ︷︷ ︸
∆x[k]

, (19)

which confirms the first part of Proposition 1.
Furthermore, we note that if the projection residual ∆x[k] in (19) is zero, the state x[k]

can be expressed as a convex combination of the reference states in the columns of R[k]. Thus,
for ∆x[k] = 0, we can rewrite (18) as

x[k + 1] = ĀR[k]λ∗︸ ︷︷ ︸
x[k]

+B̄u[k]Tλ∗

= R[k + 1]λ∗

which concludes the proof.

B Tables

Table 1 Fixed parameters used for the evaluation presented in Section 6.1

N α β ε ∆c H κ

5 −132.5 −23 10−4 0.05 diag(100, 1) 0
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Table 2 Demonstration reproduction results: ∆q and ∆q̇ denote the position/velocity errors
between the demonstrated data and the trajectories reproduced by the locally optimal DMP
combination in (8), Tc denotes the computation time needed to solve (6). Superscripts (·)F
and (·)O denote whether the results were generated with fixed or optimized basis function
parameters.

N ||∆qF ||22 ||∆qO||22 ||∆q̇F ||22 ||∆q̇O||22 TFc [s] TOc [s]

3 2770.6±6802.7 454.7±1552.1 3.8·105±9.0·105 5.3·104±1.6·105 0.005±0.026 0.5±0.4

5 415.4 ±1094.6 78.1 ±170.5 9.6·104±2.5·105 4694.3±1.1·104 0.006±0.002 2.1±4.0

7 98.4 ±217.4 70.1 ±150.7 2.0·104±4.8·104 2772.6±5470.8 0.006±0.002 6.2±9.4

9 74.4 ±160.8 69.7 ±150.5 7841.9±1.8·104 2399.9±4931.8 0.006±0.002 30.9±63.9

11 70.4 ±152.4 69.3 ±149.4 4089.4±9328.8 2358.6±4798.7 0.006±0.002 58.8±92.13

13 69.1 ±149.9 68.8 ±149.1 2751.2±6087.1 2355.0±4927.6 0.007±0.004 26.9±50.0

15 68.8 ±149.3 68.9 ±149.1 2411.8±5184.8 2350.8±4786.2 0.007±0.003 62.2±79.4

Table 3 Fixed parameters used for the examples in Section 6.3

N α β ε ∆c H κ ν D

5 −132.5 −23 10−4 0.05 diag(1, 1) 10−6 104 6


